Rati Gelashvili

Learn More
Population protocols are a popular model of distributed computing, in which randomly-interacting agents with little computational power cooperate to jointly perform computational tasks. Inspired by developments in molecular computation, and in particular DNA computing, recent algorithmic work has focused on the complexity of solving simple yet fundamental(More)
Johnson-Lindenstrauss (JL) matrices implemented by sparse random synaptic connections are thought to be a prime candidate for how convergent pathways in the brain compress information. However, to date, there is no complete mathematical support for such implementations given the constraints of real neural tissue. The fact that neurons are either excitatory(More)
Task allocation is a classic distributed problem in which a set of p potentially faulty processes must cooperate to perform a set of tasks. This paper considers a new dynamic version of the problem, in which tasks are injected adversarially during an asynchronous execution. We give the first asynchronous shared-memory algorithm for dynamic task allocation,(More)
For many years, Herlihy’s elegant computability based Consensus Hierarchy has been our best explanation of the relative power of various types of multiprocessor synchronization objects when used in deterministic algorithms. However, key to this hierarchy is treating synchronization instructions as distinct objects, an approach that is far from the(More)
Population protocols are a popular model of distributed computing, in which randomly-interacting agents with little computational power cooperate to jointly perform computational tasks. Inspired by developments in molecular computation, and in particular DNA computing, recent algorithmic work has focused on the complexity of solving simple yet fundamental(More)