Learn More
Today, visual recognition systems are still rarely employed in robotics applications. Perhaps one of the main reasons for this is the lack of demanding benchmarks that mimic such scenarios. In this paper, we take advantage of our autonomous driving platform to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM(More)
In this paper we propose a novel approach to binocular stereo for fast matching of high-resolution images. Our approach builds a prior on the disparities by forming a triangulation on a set of support points which can be robustly matched, reducing the matching ambiguities of the remaining points. This allows for efficient exploitation of the disparity(More)
—We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation(More)
We advocate the use of scaled Gaussian process latent variable models (SGPLVM) to learn prior models of 3D human pose for 3D people tracking. The SGPLVM simultaneously optimizes a low-dimensional embedding of the high-dimensional pose data and a density function that both gives higher probability to points close to training data and provides a nonlinear(More)
We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next(More)
We advocate the use of Gaussian Process Dynamical Models (GPDMs) for learning human pose and motion priors for 3D people tracking. A GPDM provides a lowdimensional embedding of human motion data, with a density function that gives higher probability to poses and motions close to the training data. With Bayesian model averaging a GPDM can be learned from(More)
A popular approach to collaborative filtering is matrix factorization. In this paper we develop a non-linear probabilistic matrix factorization using Gaussian process latent variable models. We use stochastic gradient descent (SGD) to optimize the model. SGD allows us to apply Gaussian processes to data sets with millions of observations without approximate(More)
Discriminative methods for visual object category recognition are typically non-probabilistic, predicting class labels but not directly providing an estimate of uncertainty. Gaussian Processes (GPs) provide a framework for deriving regression techniques with explicit uncertainty models; we show here how Gaussian Processes with covariance functions defined(More)
In this paper we propose an approach to holistic scene understanding that reasons jointly about regions, location, class and spatial extent of objects, presence of a class in the image, as well as the scene type. Learning and inference in our model are efficient as we reason at the segment level, and introduce auxiliary variables that allow us to decompose(More)
In this paper, we tackle the problem of indoor scene understanding using RGBD data. Towards this goal, we propose a holistic approach that exploits 2D segmentation, 3D geometry, as well as contextual relations between scenes and objects. Specifically, we extend the CPMC [3] framework to 3D in order to generate candidate cuboids, and develop a conditional(More)