Learn More
The honeybee pathogens Nosema ceranae and deformed wing virus (DWV) cause the collapse of honeybee colonies. Therefore, it is plausible that these two pathogens act synergistically to increase colony losses, since N.ceranae causes damage to the mid-gut epithelial ventricular cells and actively suppresses the honeybees' immune response, either of which could(More)
Honeybees are susceptible to a wide range of pathogens, which have been related to the occurrence of colony loss episodes reported mainly in north hemisphere countries. Their ability to resist those infections is compromised if they are malnourished or exposed to pesticides. The aim of the present study was to carry out an epidemiological study in Uruguay,(More)
The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects(More)
Nosemosis caused by the microsporidia Nosema apis and Nosema ceranae are among the most common pathologies affecting adult honey bees. N. apis infection has been associated with a reduced lifespan of infected bees and increased winter mortality, and its negative impact on colony strength and productivity has been described in several studies. By contrast,(More)
Nosemosis is one of the most widespread of the adult honey bee diseases and causes major economic losses to beekeepers. Two microsporidia have been described infecting honey bees worldwide, Nosema apis and Nosema ceranae, whose seasonality and pathology differ markedly. An increasing prevalence of microsporidian infections in honey bees has been observed(More)
Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera(More)
Identification of transmission routes and of factors affecting the spatial positions of pathogens, hosts and vectors is basic to an adequate disease management. Nosema ceranae is a Microsporidian recently described as a parasite of Apis mellifera honeybees and is currently considered the aetiological agent of an emergent illness named nosemosis type C. In(More)
Nosema apis and Nosema ceranae are microsporidia which present resistant spores for the transmission stage (environmental spores) that play an important role for epidemiology and for laboratory studies of honey bee microsporidiosis. In this study, the long-term longevity of N. apis and N. ceranae spores exposed to 4 °C, room temperature (mean 25 °C) and 35(More)
The Small Hive Beetle (SHB) is considered one of the major threats to the long-term sustainability and economic success of honey bee colonies in Europe. The risk of introduction into the EU had been reported as moderate to high. Indeed, it has been recently reported an outbreak in the south of Italy. Here, the presence of Aethina tumida in beekeeping farms(More)
The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex(More)