Raquel Herrador

Learn More
Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used(More)
Topoisomerase I (Top1) releases torsional stress during DNA replication and transcription and is inhibited by camptothecin and camptothecin-derived cancer chemotherapeutics. Top1 inhibitor cytotoxicity is frequently linked to double-strand break (DSB) formation as a result of Top1 being trapped on a nicked DNA intermediate in replicating cells. Here we use(More)
Deregulated origin licensing and rereplication promote genome instability and tumorigenesis by largely elusive mechanisms. Investigating the consequences of Early mitotic inhibitor 1 (Emi1) depletion in human cells, previously associated with rereplication, we show by DNA fiber labeling that origin reactivation occurs rapidly, well before accumulation of(More)
Embryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and(More)
Oncogene-induced DNA replication stress activates the DNA damage response (DDR), a crucial anticancer barrier. DDR inactivation in these conditions promotes genome instability and tumor progression, but the underlying molecular mechanisms are elusive. We found that overexpression of both Cyclin E and Cdc25A rapidly slowed down replication forks and induced(More)
Expansion of GAA/TTC repeats is the causative event in Friedreich's ataxia. GAA repeats have been shown to hinder replication in model systems, but the mechanisms of replication interference and expansion in human cells remained elusive. To study in vivo replication structures at GAA repeats, we designed a new plasmid-based system that permits the analysis(More)
The detailed understanding of the DNA replication process requires structural insight. The combination of psoralen cross-linking and electron microscopy has been extensively exploited to reveal the fine architecture of in vivo DNA replication intermediates. This approach proved instrumental to uncover the basic mechanisms of DNA duplication, as well as the(More)
Poly(ADP-ribosyl)ation (PAR) has been implicated in various aspects of the cellular response to DNA damage and genome stability. Although 17 human poly(ADP-ribose) polymerase (PARP) genes have been identified, a single poly(ADP-ribosyl) glycohydrolase (PARG) mediates PAR degradation. Here we investigated the role of PARG in the replication of human(More)
DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA(More)
The Rockefeller University Press $30.00 J. Cell Biol. Vol. 208 No. 5 563–579 www.jcb.org/cgi/doi/10.1083/jcb.201406099 JCB 563 *R. Zellweger and D. Dalcher contributed equally to this paper. Correspondence to Massimo Lopes: Massimo Lopes lopes@imcr.uzh.ch Abbreviation used in this paper: ANOVA, analysis of variance; APH, aphidicolin; CDDP,(More)
  • 1