Learn More
We have constructed a library in Escherichia coli of mutant gfp genes (encoding green fluorescent protein, GFP) expressed from a tightly regulated inducible promoter. We introduced random amino acid (aa) substitutions in the twenty aa flanking the chromophore Ser-Tyr-Gly sequence at aa 65-67. We then used fluorescence-activated cell sorting (FACS) to select(More)
In yeast, certain resident trans-Golgi network (TGN) proteins achieve steady-state localization by cycling through late endosomes. Here, we show that chitin synthase III (Chs3p), an enzyme involved in the assembly of the cell wall at the mother-bud junction, populates an intracellular reservoir that is maintained by a cycle of transport between the TGN and(More)
The ability of Salmonella typhimurium to survive and replicate within murine macrophages is dependent on a low phagosomal pH. This requirement for an acidic vacuole suggests that low pH is an important environmental stimulus for the transcription of genes necessary for intracellular survival. To study the behaviour of acid-inducible genes in response to the(More)
Salmonella pathogenicity island 2 (SPI-2) encodes a putative type III secretion system necessary for systemic infection in animals. We have investigated the transcriptional organization and regulation of SPI-2 by creating gfp fusions throughout the entire gene cluster. These gfp fusions demonstrated that SPI-2 genes encoding structural, regulatory and(More)
A selection strategy was devised to identify bacterial genes preferentially expressed when a bacterium associates with its host cell. Fourteen Salmonella typhimurium genes, which were under the control of at least four independent regulatory circuits, were identified to be selectively induced in host macrophages. Four genes encode virulence factors,(More)
During cell stress, Saccharomyces cerevisiae increases the synthesis of chitin and glucans to strengthen and repair the cell wall. In this study, we show that under conditions of cell stress, the steady-state localization of chitin synthase III (Chs3p) shifts from internal stores (chitosomes) to the plasma membrane (PM). This redistribution occurs rapidly(More)
Chlamydia trachomatis is a leading cause of genital and ocular infections for which no vaccine exists. Upon entry into host cells, C. trachomatis resides within a membrane-bound compartment—the inclusion—and secretes inclusion membrane proteins (Incs) that are thought to modulate the host-bacterium interface. To expand our understanding of Inc function(s),(More)
Chlamydia and Chlamydophila sp. are highly related obligate intracellular bacterial pathogens that cause sexually transmitted diseases, ocular infections and atypical pneumonias. Relatively little is known about the molecular mechanisms by which Chlamydiae manipulate the mammalian host because they are intractable to genetic manipulation. Studies with(More)
Mycobacterium marinum grows at an optimal temperature of 33 degrees C, far lower than that for M. tuberculosis. Consequently, M. marinum infection of mammals is restricted largely to the cooler surfaces of the body, such as the extremities, but it causes a systemic infection in a large number of poikilothermic animals. Here, we describe a laboratory animal(More)
Our understanding of how obligate intracellular pathogens co-opt eukaryotic cellular functions has been limited by their intractability to genetic manipulation and by the abundance of pathogen-specific genes with no known functional homologues. In this report we describe a gene expression system to characterize proteins of unknown function from the obligate(More)