Raphael Aronson

Learn More
  • R Aronson
  • 1995
In connection with recent work on remote imaging of random media by light, a straightforward generalization of the proper diffusion boundary conditions is presented that takes into account Fresnel reflection. The Milne problem at exterior boundaries is solved for various values of index of refraction, absorption, and scattering anisotropy parameters to(More)
We present a model suitable for computing images of absorption cross sections of thick tissue structures illuminated at near infrared (NIR) wavelengths from tomographic projection data. Image reconstruction is accomplished by solving a system of linear equations derived from transport theory. Reconstruction results using different algebraic solvers are(More)
A number of investigators have recently claimed, based on both analysis from transport theory and transport-theory-based Monte Carlo calculations, that the diffusion coefficient for photon migration should be taken to be independent of absorption. We show that these analyses are flawed and that the correct way of extracting diffusion theory from transport(More)
—We present a model suitable for computing images of absorption cross sections of thick tissue structures illuminated at near infrared (NIR) wavelengths from tomographic projection data. Image reconstruction is accomplished by solving a system of linear equations derived from transport theory. Reconstruction results using different algebraic solvers are(More)
  • 1