Learn More
The basis for communication between nerve cells lies in the process of exocytosis, the fusion of neurotransmitter filled vesicles with the cell membrane resulting in release of the signaling molecules. Even though much is known about this process, the extent that the vesicles are emptied upon fusion is a topic that is being debated. We have analyzed(More)
We present an amperometric study of content release from individual vesicles in an artificial secretory cell designed with the minimal components required to carry out exocytosis. Here, the membranes of the cell and vesicles are substituted for protein-free giant and large unilamellar vesicles respectively. In replacement of the SNARE-complex, the cell(More)
Angiogenesis, the formation of new blood vessels, is a critical but complex phenomenon modulated by numerous physicochemical conditions. Nitric oxide (NO) is a very well known biological mediator involved in vascular physiology. This study focuses on relationships between the effect of angiogenin, a major angiogenic factor, and extracellular NO release. NO(More)
Fouling of electrode surfaces by electrode reaction products or by biological spectator species is known to inactivate electrochemical sensors and thus limit their use in biological conditions. Here we present an investigation on the stability of boron doped diamond (BDD) electrodes with different levels of doping. Three different doping levels were used(More)
Anthrax is a serious bacterial disease of man and animals whose pathogenesis involves the secretion of lethal toxins in the host. The intracellular delivery of toxic complexes involves a complex structural rearrangement of sub-domains of the exotoxin protective antigen (PA). We have used a biocompatible microelectrode array, coated with J774 mouse(More)
Nitric oxide (NO), a biological mediator involved in vascular physiology, was sensed electrochemically using a microelectrode array. Angiogenin was shown to trigger nitric oxide synthase (NOS) activity in human umbilical vein endothelial cells and embryonic stem cell derived endothelial cells independently from its RNase activity.
Oxygen is a major actor of many physiological, biological and industrial processes; as such, its monitoring is of paramount importance. The effects of protein biofouling on dissolved oxygen measurements are described. The consequences of protein adsorption on electrode kinetics and mass transport were quantified using cyclic voltammetry, AC impedance and(More)
Nitric oxide (NO) is a critical biological mediator involved in numerous diseases. However, the short lifetime of this molecule in biological conditions can make its study in situ complicated. Here, we review some recent results on the role of NO in angiogenesis, obtained using a biocompatible microelectrode array. This simple system allowed for the quick(More)
BACKGROUND Nitric oxide (NO) plays a major role in physiology as a biological mediator. NO has been identified in nervous, immune and vascular systems and is a critical parameter in numerous pathologies, such as cancer. This article describes the electrochemical biomeasurements of NO synthase (NOS) activity from cultured endothelial cells using a multiple(More)