Learn More
Type II toxin-antitoxin (TA) systems are generally composed of two genes organized in an operon, encoding a labile antitoxin and a stable toxin. They were first discovered on plasmids where they contribute to plasmid stability by a phenomenon denoted as 'addiction', and subsequently in bacterial chromosomes. To discover novel families of antitoxins and(More)
UNLABELLED Prophinder is a prophage prediction tool coupled with a prediction database, a web server and web service. Predicted prophages will help to fill the gaps in the current sparse phage sequence space, which should cover an estimated 100 million species. Systematic and reliable predictions will enable further studies of prophages contribution to the(More)
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional structure is assessed from a first major evaluation of blind predictions. This evaluation was performed as part of a communitywide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Seven newly determined structures of(More)
The ACLAME database is dedicated to the collection, analysis and classification of sequenced mobile genetic elements (MGEs, in particular phages and plasmids). In addition to providing information on the MGEs content, classifications are available at various levels of organization. At the gene/protein level, families group similar sequences that are(More)
The nucleotide sequence of the biphenyl catabolic transposon Tn4371 has been completed and analyzed. It confirmed that the element has a mosaic structure made of several building blocks. In addition to previously identified genes coding for a tyrosine recombinase related to phage integrases and for biphenyl degradation enzymes very similar to those of(More)
Bacteriophage genomes show pervasive mosaicism, indicating the importance of horizontal gene exchange in their evolution. Phage genomes represent unique combinations of modules, each of them with a different phylogenetic history. The traditional classification, based on a variety of criteria such as nucleic acid type (single/double-stranded DNA/RNA),(More)
The ACLAME database (http://aclame.ulb.ac.be) is a collection and classification of prokaryotic mobile genetic elements (MGEs) from various sources, comprising all known phage genomes, plasmids and transposons. In addition to providing information on the full genomes and genetic entities, it aims to build a comprehensive classification of the functional(More)
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional (3D) structure is reassessed by evaluating blind predictions, performed during 2003-2004 as part of Rounds 3-5 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Ten newly determined structures of(More)
Many plasmids are mobile genetic elements (MGEs) and, as other members of that group of DNA entities, their genomes display a mosaic and combinatorial structure, making their classification extremely difficult. As other MGEs, plasmids play a major role in horizontal transfer of genetic materials and genome reorganization. Yet, the full impact of such(More)
Phages are the most abundant biological entities on Earth and are central players in the evolution of their bacterial hosts and the emergence of new pathogens. In addition, they bear an enormous potential for the development of new drugs, therapies or nanotechnologies. As a result, interest in phages is reviving. In the genomic era, our perspective on the(More)