Raoul Plessius

  • Citations Per Year
Learn More
Redox-active ligands have evolved from being considered spectroscopic curiosities - creating ambiguity about formal oxidation states in metal complexes - to versatile and useful tools to expand on the reactivity of (transition) metals or to even go beyond what is generally perceived possible. This review focusses on metal complexes containing either(More)
Correction for 'New avenues for ligand-mediated processes - expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands' by Daniël L. J. Broere et al., Chem. Soc. Rev., 2015, DOI: 10.1039/c5cs00161g.
The new dinucleating redox-active ligand (LH4 ), bearing two redox-active NNO-binding pockets linked by a 1,2,3-triazole unit, is synthetically readily accessible. Coordination to two equivalents of PdII resulted in the formation of paramagnetic (S=1/2 ) dinuclear Pd complexes with a κ2 -N,N'-bridging triazole and a single bridging chlorido or azido ligand.(More)
We present a new metal-organic framework (MOF) built from lanthanum and pyrazine-2,5-dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2]⋅2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability.(More)
  • 1