Raouf Hamzaoui

Learn More
Unequal loss protection with systematic Reed-Solomon codes allows reliable transmission of embedded multimedia over packet erasure channels. The design of a fast algorithm with low memory requirements for the computation of an unequal loss protection solution is essential in real-time systems. Because the determination of an optimal solution is(More)
We consider a joint source-channel coding system that protects an embedded wavelet bitstream against noise using a finite family of channel codes with error detection and error correction capability. The performance of this system may be measured by the expected distortion or by the expected number of correctly received source bits subject to a target total(More)
Application-layer forward error correction (FEC) is used in many multimedia communication systems to address the problem of packet loss in lossy packet networks. One powerful form of application-layer FEC is unequal error protection which protects the information symbols according to their importance. We propose a method for unequal error protection with a(More)
Reliable real-time transmission of packetized embedded multimedia data over noisy channels requires the design of fast error control algorithms. For packet erasure channels, efficient forward error correction is obtained by using systematic Reed-Solomon (RS) codes across packets. For fading channels, state-of-the-art performance is given by a product(More)
Embedded image codes are very sensitive to channel noise because a single bit error can lead to an irreversible loss of synchronization between the encoder and the decoder. Sherwood and Zeger introduced a powerful system that protects an embedded wavelet image code with a concatenation of a cyclic redundancy check coder for error detection and a(More)
We consider a joint source-channel coding system that protects an embedded bitstream using a finite family of channel codes with error detection and error correction capability. The performance of this system may be measured by the expected distortion or by the expected number of correctly decoded source bits. Whereas a rate-based optimal solution can be(More)
Video streaming over the Internet and packet-based wireless networks is sensitive to packet loss, which can severely damage the quality of the received video. To protect the transmitted video data against packet loss, application-layer forward error correction (FEC) is commonly used. Typically, for a given source block, the channel code rate is fixed in(More)
We study joint source-channel coding systems for the transmission of images over varying channels without feedback. We consider the situation where the channel statistics are unknown to the transmitter and focus on systems that enable good performance over a wide range of channel conditions. We first propose a linear-time channel code rate selection(More)
Embedded wavelet codes are very sensitive to channel noise because a single bit error can lead to an irreversible loss of synchronization between the encoder and the decoder. Sherwood and Zeger protected a zero-tree based embedded wavelet code sent through a memoryless noisy channel by using cyclic redundancy detection codes (CRC) and channel correction(More)
Layered multiple description codes allow robust transmission of scalable media data over packet erasure networks, while providing simple rate adaptation and bandwidth savings for shared bottleneck links. We show how to efficiently design layered multiple description codes for multicast and broadcast applications in memoryless packet erasure networks. Our(More)