Ranjit Bahadur

Learn More
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is(More)
Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of(More)
We examine the temporal and the spatial trends in the concentrations of black carbon (BC) e recorded by the IMPROVE monitoring network for the past 20 years e in California. Annual average BC concentrations in California have decreased by about 50% from 0.46 mg m 3 in 1989 to 0.24 m gm 3 in 2008 compared to the corresponding reductions in diesel BC(More)
Atmospheric particles collected during the ICARTT 2004 field experiment at ground based sites at Appledore Island (AI), New Hampshire, Chebogue Point (CP), Nova Scotia, and aboard the R/V Ronald Brown (RB) were analyzed using Fourier transform infrared (FTIR) spectroscopy to quantify organic mass (OM) and organic functional groups. Several of these spectra(More)
[1] Black carbon (BC) has many effects on climate including the direct effect on atmospheric absorption, indirect and semi-direct effects on clouds, snow effects, and others. While most of these are positive (warming), the first indirect effect is negative and quantifying its magnitude in addition to other BC feedbacks is important for supporting policies(More)
Surface tensions for liquid-vapor (lv), solid-liquid (sl), and solid-vapor (sv) interfaces are calculated from molecular dynamics simulations of the NaCl-water-air system. Three distinct calculation techniques based on thermodynamic properties are used to describe the multicomponent mixtures. Simulations of each bulk phase (including a liquid saturated(More)
Deployment of improved biomass burning cookstoves is recognized as a black carbon (BC) mitigation measure that has the potential to achieve health benefits and climate cobenefits. Yet, few field based studies document BC concentration reductions (and resulting human exposure) resulting from improved stove usage. In this paper, data are presented from 277(More)
To gain a better understanding of the interaction of water and NaCl at the surface during dissolution, we have used molecular dynamics to simulate the interface with two equal-sized slabs of solid NaCl and liquid water in contact. The introduction of voids in the bulk of the salt, as well as steps or pits on the surface of the NaCl slab results in a(More)
Deliquescence properties of sodium chloride are size dependent for particles smaller than 100 nm. Molecular dynamics (MD) simulations are used to determine deliquescence relative humidity (DRH) for particles in this size range by modeling idealized particles in contact with humid air. Constant humidity conditions are simulated by inclusion of a liquid(More)