Ranjan Kumar Sahoo

Learn More
The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling,(More)
Biological nitrogen fixation (BNF) is highly effective in the field and potentially useful to reduce adverse effects chemical fertilisers. Here, Azotobacter species were selected via phenotypic, biochemical and molecular characterisations from different rice fields. Acetylene reduction assay of Azotobacter spp. showed that Azotobacter vinelandii (Az3) fixed(More)
Plant Ca(2+)ATPases regulate many signalling pathways which are important for plant growth, development and abiotic stress responses. Our previous work identified that overexpression of OsACA6 confers salinity and drought tolerance in tobacco. In the present work we report, the function of OsACA6 in cold stress tolerance in transgenic tobacco plants. The(More)
Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The(More)
Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif(More)
The plant growth promoting rhizobacteria (PGPRs) as a biofertilizer provide agricultural benefits to advance various crops productivity. Recently, we discovered a novel Azotobacter vinellandii (SRIAz3) from rice rhizosphere, which is well competent to improve rice productivity. In this study, we investigated a role of A. vinellandii to confer salinity(More)
The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of(More)
To overcome the salinity-induced loss of crop yield, a salinity-tolerant trait is required. The SUV3 helicase is involved in the regulation of RNA surveillance and turnover in mitochondria, but the helicase activity of plant SUV3 and its role in abiotic stress tolerance have not been reported so far. Here we report that the Oryza sativa (rice) SUV3 protein(More)
The helicases provide duplex unwinding function in an ATP-dependent manner and thereby play important role in almost all the nucleic acids transaction. Since stress reduces the protein synthesis by affecting the cellular gene expression machinery, so it is evident that molecules involved in nucleic acid processing including translation factors/helicases are(More)
The p68, a prototypic member of DEAD-box protein family, is involved in pre-mRNA splicing, RNA-induced silencing and transcription regulation. However, the role of plant p68 in stress tolerance and molecular targets responsible for this has not been reported. Here, we report the isolation and characterization of salinity-induced pea p68 (Psp68). The(More)