Learn More
gamma-Aminobutyric acid, type B (GABA(B)) receptors are heterodimeric G protein-coupled receptors that mediate slow inhibitory synaptic transmission in the central nervous system. To identify novel interacting partners that might regulate GABA(B) receptor (GABA(B)R) functionality, we screened the GABA(B)R2 carboxyl terminus against a recently created(More)
G protein-coupled receptors (GPCRs) mediate physiological responses to various ligands, such as hormones, neurotransmitters and sensory stimuli. The signalling and trafficking properties of GPCRs are often highly malleable depending on the cellular context. Such fine-tuning of GPCR function can be attributed in many cases to receptor-interacting proteins(More)
Stimulation of beta2-adrenergic receptors on the cell surface by adrenaline or noradrenaline leads to alterations in the metabolism, excitability, differentiation and growth of many cell types. These effects have traditionally been thought to be mediated exclusively by receptor activation of intracellular G proteins. However, certain physiological effects(More)
GPR37 (also known as Pael-R) and GPR37L1 are orphan G protein-coupled receptors that are almost exclusively expressed in the nervous system. We screened these receptors for potential activation by various orphan neuropeptides, and these screens yielded a single positive hit: prosaptide, which promoted the endocytosis of GPR37 and GPR37L1, bound to both(More)
The beta(1)-adrenergic receptor (beta(1)AR) is the most abundant subtype of beta-adrenergic receptor in the mammalian brain and is known to potently regulate synaptic plasticity. To search for potential neuronal beta(1)AR-interacting proteins, we screened a rat brain cDNA library using the beta(1)AR carboxyl terminus (beta(1)AR-CT) as bait in the yeast(More)
Olfactory receptors (ORs) comprise more than half of the large class I G protein-coupled receptor (GPCR) superfamily. Although cloned over a decade ago, little is known about their properties because wild-type ORs do not efficiently reach the cell surface following heterologous expression. Receptor-receptor interactions strongly influence surface(More)
The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and(More)
The Na ؉ ͞H ؉ exchanger regulatory factor (NHERF) binds to the tail of the ␤ 2-adrenergic receptor and plays a role in adrenergic regulation of Na ؉ ͞H ؉ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the ␤ 2 receptor. Mutagenesis studies of the ␤ 2 receptor tail revealed that the optimal C-terminal motif(More)
The Na+/H+ exchanger regulatory factor 2 (NHERF-2) is a scaffold protein that regulates cellular signaling by forming protein complexes. Several proteins known to interact with NHERF-2 are abundantly expressed in the central nervous system, but little is known about NHERF-2 localization in the brain. By using immunohistochemistry combined with light and(More)
The potential role of dimerization in controlling the expression and pharmacological properties of alpha1-adrenoceptor subtypes was examined using coimmunoprecipitation of epitope-tagged receptors. Human alpha1-adrenoceptor subtypes (alpha1A, alpha1B, alpha1D) were tagged at their amino-termini with Flag or hemagglutinin epitopes and transfected into human(More)