Learn More
The coupling mechanism between endoplasmic reticulum (ER) calcium ion (Ca2+) stores and plasma membrane (PM) store-operated channels (SOCs) is crucial to Ca2+ signaling but has eluded detection. SOCs may be functionally related to the TRP family of receptor-operated channels. Direct comparison of endogenous SOCs with stably expressed TRP3 channels in human(More)
The elusive coupling between endoplasmic reticulum (ER) Ca2+ stores and plasma membrane (PM) "store-operated" Ca2+ entry channels was probed through a novel combination of cytoskeletal modifications. Whereas coupling was unaffected by disassembly of the actin cytoskeleton, in situ redistribution of F-actin into a tight cortical layer subjacent to the PM(More)
We report here that PLC-gamma isoforms are required for agonist-induced Ca2+ entry (ACE). Overexpressed wild-type PLC-gamma1 or a lipase-inactive mutant PLC-gamma1 each augmented ACE in PC12 cells, while a deletion mutant lacking the region containing the SH3 domain of PLC-gamma1 was ineffective. RNA interference to deplete either PLC-gamma1 or PLC-gamma2(More)
The impact of calcium signalling on so many areas of cell biology reflects the crucial role of calcium signals in the control of diverse cellular functions. Despite the precision with which spatial and temporal details of calcium signals have been resolved, a fundamental aspect of the generation of calcium signals -- the activation of 'store-operated(More)
D-serine is a physiologic coagonist with glutamate at NMDA-subtype glutamate receptors. As D-serine is localized in glia, synaptically released glutamate presumably stimulates the glia to form and release D-serine, enabling glutamate/D-serine cotransmission. We show that serine racemase (SR), which generates D-serine from L-serine, is physiologically(More)
TFII-I is a transcription factor and a target of phosphorylation by Bruton's tyrosine kinase. In humans, deletions spanning the TFII-I locus are associated with a cognitive defect, the Williams-Beuren cognitive profile. We report an unanticipated role of TFII-I outside the nucleus as a negative regulator of agonist-induced calcium entry (ACE) that(More)
Many ion channels are regulated by lipids, but prominent motifs for lipid binding have not been identified in most ion channels. Recently, we reported that phospholipase Cgamma1 (PLC-gamma1) binds to and regulates TRPC3 channels, components of agonist-induced Ca2+ entry into cells. This interaction requires a domain in PLC-gamma1 that includes a partial(More)
TRPC channels are ubiquitously expressed among cell types and mediate signals in response to phospholipase C (PLC)-coupled receptors. TRPC channels function as integrators of multiple signals resulting from receptor-induced PLC activation, which catalyzes the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate(More)
Both multiple sequence alignment and phylogenetic analysis are problematic in the "twilight zone" of sequence similarity (≤ 25% amino acid identity). Herein we explore the accuracy of phylogenetic inference at extreme sequence divergence using a variety of simulated data sets. We evaluate four leading multiple sequence alignment (MSA) methods (MAFFT,(More)
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. SOC-mediated Ca(2+) entry is complex and may reflect more than one type of channel and coupling mechanism. To assess such possible divergence the function and coupling of SOCs was compared with two other distinct yet related Ca(2+)(More)