Randall W. Gentry

Learn More
Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without(More)
Better understanding of bacterial fate and transport in watersheds is necessary for improved regulatory management of impaired streams. Novel statistical time series analyses of coliform data can be a useful tool for evaluating the dynamics of temporal variation and persistence of bacteria within a watershed. For this study, daily total coliform data for(More)
This study analyzed the occurrence of Escherichia coli in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region using synoptic monitoring (samples taken throughout the watershed system) during base-flow conditions. The objective of the study was to evaluate the occurrence of E. coli during base-flow(More)
The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability(More)
This paper presents an analysis of the occurrence and uncertainty of source-specific Bacteroides and Escherichia coli in a stream in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region during baseflow conditions. The objectives of the study were to evaluate the occurrence, hydrologic significance,(More)
Quantifying the hydrological response to an increased atmospheric carbon dioxide concentration and climate change is important in a watershed scale particularly from the application point of view. The specific objectives are to evaluate the climate change impact on the future water yield at the outlet of Clinch River Watershed upstream of Norris Lake in(More)