Randall E. Bailey

Learn More
The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these(More)
Eight 757 commercial airline captains flew 22 approaches using the Reno Sparks 16R Visual Arrival under simulated Category I conditions. Approaches were flown using a head-down synthetic vision display to evaluate four tunnel (" minimal " , " box " , " dynamic pathway " , " dynamic crow's feet ") and three guidance (" ball " , " tadpole " , " follow-me(More)
NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size " A " head-down, size " X " head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making(More)
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves(More)
Limited visibility and reduced situational awareness have been cited as predominant causal factors for both Controlled Flight Into Terrain (CFIT) and runway incursion accidents. NASA's Synthetic Vision Systems (SVS) project is developing practical application technologies with the goal of eliminating low visibility conditions as a causal factor to civil(More)
Within NASA's Aviation Safety Program, the Synthetic Vision Systems Project is developing display system concepts to improve pilot terrain/situation awareness by providing a perspective synthetic view of the outside world through an on-board database driven by precise aircraft positioning information updating via Global Positioning System-based data. This(More)
In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain(More)
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project(More)
A Collision Avoidance for Airport Traffic (CAAT) concept for the airport Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi,(More)
Previous research has demonstrated that a Head-Up Display (HUD) can be used to enable more capacity and safer aircraft surface operations. This previous research also noted that the HUD exhibited two major limitations which hindered the full potential of the display concept: 1) the monochrome HUD format; and, 2) a limited, fixed field of regard. Full-color(More)