Learn More
The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling(More)
Reactive oxygen species (ROS) and the coupled oxidative stress have been associated with tumor formation. Several studies suggested that ROS can act as secondary messengers and control various signaling cascades. In the present studies, we characterized the oxidative stress status in three different prostate cancer cells (PC3, DU145, and LNCaP) exhibiting(More)
BACKGROUND Prostate-derived Ets factor (PDEF) is expressed in tissues of high epithelial content including prostate, although its precise function has not been fully established. Conventional therapies produce a high rate of cure for patients with localized prostate cancer, but there is, at present, no effective treatment for intervention in metastatic(More)
Androgen receptor (AR) signaling is involved in the development and progression of prostate cancer. Tumor microvasculature contributes to continual exposure of prostate cancer cells to hypoxia-reoxygenation, however, the role of hypoxia-reoxygenation in prostate cancer progression and modulation of AR signaling is not understood. In this study, we evaluated(More)
Prostate cancer is the most commonly diagnosed cancer, with an estimated 240,000 new cases reported annually in the United States. Due to early detection and advances in therapies, more than 90% of patients will survive 10 years post diagnosis and treatment. Radiation is a treatment option often used to treat localized disease; however, while radiation is(More)
Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and(More)
Nephrolithiasis is a multi-factorial disease which, in the majority of cases, involves the renal deposition of calcium oxalate. Oxalate is a metabolic end product excreted primarily by the kidney. Previous studies have shown that elevated levels of oxalate are detrimental to the renal epithelial cells; however, oxalate renal epithelial cell interactions are(More)
  • 1