Learn More
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey(More)
In the massive online worlds of social media, users frequently rely on organizing themselves around specific topics of interest to find and engage with like-minded people. However, navigating these massive worlds and finding topics of specific interest often proves difficult because the worlds are mostly organized haphazardly, leaving users to find relevant(More)
Over the past decade, data science and machine learning has grown from a mysterious art form to a staple tool across a variety of fields in academia, business, and government. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning—pipeline design. We implement a Tree-based(More)
Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. The(More)
Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the(More)
Even though grouping behaviour has been actively studied for over a century, the relative importance of the numerous proposed fitness benefits of grouping remain unclear. We use a digital model of evolving prey under simulated predation to directly explore the evolution of gregarious foraging behaviour according to one such benefit, the 'many eyes'(More)
Risk aversion is a common behavior universal to humans and animals alike. Economists have traditionally defined risk preferences by the curvature of the utility function. Psychologists and behavioral economists also make use of concepts such as loss aversion and probability weighting to model risk aversion. Neurophysiological evidence suggests that loss(More)
As the field of data science continues to grow, there will be an ever-increasing demand for tools that make machine learning accessible to non-experts. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning--pipeline design. We implement an open source Tree-based Pipeline(More)
We investigate steady state entanglement in an open quantum system, specifically a single atom in a driven optical cavity with cavity loss and spontaneous emission. The system reaches a steady pure state when driven very weakly. Under these conditions, there is an optimal value for atom-field coupling to maximize entanglement, as larger coupling favors a(More)