Learn More
The 90 kDa ribosomal S6 kinase (RSK) family of proteins is a group of highly conserved Ser/Thr kinases that regulate diverse cellular processes, such as cell growth, cell motility, cell survival and cell proliferation. RSKs are downstream effectors of the Ras–extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signalling(More)
Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in either of the two tumor suppressor genes TSC1 or TSC2, which encode hamartin and tuberin, respectively. Tuberin and hamartin form a complex that inhibits signaling by the mammalian target of rapamycin (mTOR), a critical nutrient sensor and regulator of cell growth and(More)
The tuberous sclerosis complex (TSC) is a genetic disorder that is caused through mutations in either one of the two tumor suppressor genes, TSC1 and TSC2, that encode hamartin and tuberin, respectively. Interaction of hamartin with tuberin forms a heterodimer that inhibits signaling by the mammalian target of rapamycin to its downstream targets: eukaryotic(More)
The viability of vertebrate cells depends on a complex signaling interplay between survival factors and cell-death effectors. Subtle changes in the equilibrium between these regulators can result in abnormal cell proliferation or cell death, leading to various pathological manifestations. Death-associated protein kinase (DAPK) is a multidomain(More)
Circadian rhythms in Drosophila rely on cyclic regulation of the period (per) and timeless (tim) clock genes. The molecular cycle requires rhythmic phosphorylation of PER and TIM proteins, which is mediated by several kinases and phosphatases such as Protein Phosphatase-2A (PP2A) and Protein Phosphatase-1 (PP1). Here, we used mass spectrometry to identify(More)
Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit(More)
Bax, a proapoptotic member of the Bcl-2 family of proteins, resides in the cytosol and translocates to the mitochondrial membrane upon induction of apoptosis. It has been proposed that Bax does not translocate to mitochondria under normal physiological conditions, due to interaction between amino (ART) and carboxy (TM) terminal domains. Here, we report the(More)
Constitutive activation of one or more kinase signaling pathways is a hallmark of many cancers. Here we extend the previously described mass spectrometry–based KAYAK approach by monitoring kinase activities from multiple signaling pathways simultaneously. This improved single-reaction strategy, which quantifies the phosphorylation of 90 synthetic peptides(More)
N-alpha-tosyl-L-phenylalanyl chloromethyl ketone (TPCK) has anti-tumorigenic properties, but its direct cellular targets are unknown. Previously, we showed TPCK inhibited the PDKl-dependent AGC kinases RSK, Akt and S6K1 without inhibiting PKA, ERK1/2, PI3K, and PDK1 itself. Here we show TPCK-inhibition of the RSK-related kinases MSK1 and 2, which can be(More)
Most kinases are capable of recognizing and phosphorylating peptides containing short, linear sequence motifs. To measure the activation state of many kinases from the same cell lysate, we created a multiplexed, mass-spectrometry-based in vitro kinase assay. Ninety chemically synthesized peptides derived from well-characterized peptide substrates and in(More)
  • 1