Rampal S. Etienne

Learn More
Species abundance distributions (SADs) follow one of ecology's oldest and most universal laws--every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the study of SADs. Several key points emerge. (i) Literally dozens(More)
The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general(More)
Epidemiological studies typically focus on single-parasite systems, although most hosts harbor multiple parasite species; thus, the potential impacts of co-infection on disease dynamics are only beginning to be recognized. Interactions between macroparasites, such as gastrointestinal nematodes, and microparasites causing diseases like TB, AIDS, and malaria(More)
A decade has now passed since Hubbell published The Unified Neutral Theory of Biodiversity and Biogeography. Neutral theory highlights the importance of dispersal limitation, speciation and ecological drift in the natural world and provides quantitative null models for assessing the role of adaptation and natural selection. Significant advances have been(More)
Hubbell's neutral theory of biodiversity has challenged the classic niche-based view of ecological community structure. Although there have been many attempts to falsify Hubbell's theory, we argue that falsification should not lead to rejection, because there is more to the theory than neutrality alone. Much of the criticism has focused on the neutrality(More)
Understanding the maintenance and origin of biodiversity is a formidable task, yet many ubiquitous ecological patterns are predicted by a surprisingly simple and widely studied neutral model that ignores functional differences between species. However, this model assumes that new species arise instantaneously as singletons and consequently makes unrealistic(More)
Most hosts are infected with multiple parasites, and responses of the immune system to co-occurring parasites may influence disease spread. Helminth infection can bias the host immune response toward a T-helper type 2 (Th2) over a type 1 (Th1) response, impairing the host’s ability to control concurrent intracellular microparasite infections and potentially(More)
As the utility of the neutral theory of biodiversity is increasingly being recognized, there is also an increasing need for proper tools to evaluate the relative importance of neutral processes (dispersal limitation and stochasticity). One of the key features of neutral theory is its close link to data: sampling formulas, giving the probability of a data(More)
In a recent paper, I presented a sampling formula for species abundances from multiple samples according to the prevailing neutral model of biodiversity, but practical implementation for parameter estimation was only possible when these samples were from local communities that were assumed to be equally dispersal limited. Here I show how the same sampling(More)
Observational evidence increasingly suggests that the Janzen-Connell effect extends beyond the species boundary. However, this has not been confirmed experimentally. Herein, we present both observational and experimental evidence for a phylogenetic Janzen-Connell effect. In a subtropical forest in Guangdong province, China, we observed that co-occurring(More)