Learn More
A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl(More)
The new nonsteroidal antiinflammatory drug (NSAID) arylacetic amfenac (2-amino-3-benzoylphenylacetic acid) and 19 substituted derivatives were studied in order to correlate the biological activities with the structure-related parameters. The geometry of amfenac in neutral and anionic form was totally optimized, starting from standard geometries and(More)
The dual or selective ability of 24 derived mono- and 2,6-di-tert-butylphenols (DTBP) to act as inhibitors of cyclooxygenase (COX) and/or 5-lipoxygenase (LOX) enzymes is investigated. Firstly, we explored the conformational variability of the compounds. It is found that dual inhibitors can adopt four minimum energy conformations: cis or trans, depending on(More)
Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been(More)
Following our previous research on anti-inflammatory drugs (NSAIDs), we report on the design and synthesis of 4-(aryloyl)phenyl methyl sulfones. These substances were characterized for their capacity to inhibit cyclooxygenase (COX-1 and COX-2) isoenzymes. Molecular modeling studies showed that the methylsulfone group of these compounds was inserted deep in(More)
Carboxylesterases (CEs) are a family of ubiquitous enzymes with broad substrate specificity, and their inhibition may have important implications in pharmaceutical and agrochemical fields. One of the most potent inhibitors both for mammalian and insect CEs are trifluoromethyl ketones (TFMKs), but the mechanism of action of these chemicals is not completely(More)
The evolution of a ternary molecular system (imine, diene and nitrile) is analyzed to disclose the pathways leading to a divergent synthetic outcome. The Lewis acid catalyzed reaction between cyclohexadiene, 2-phenyl-indol-3-one and acetonitrile yields the imino-Diels-Alder adduct as the major product together with minor amounts of the(More)