Learn More
How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a(More)
Lipid composition and fatty acid analysis of the major classes of membrane phospholipids were determined during myogenic differentiation of L6 skeletal muscle cells. The cholesterol to glycerophospholipids ratio decreased during differentiation, both in total (TM) and detergent-resistant membranes (DRM). Analyses of the membrane lipids showed that(More)
mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression(More)
Endothelial permeability is controlled by adhesive strengths which connect cells to each other through interendothelial junctions and by contractile forces associated with cytoskeleton reorganization. Phospholipase D (PLD) activation resulting in the generation of phosphatidic acid (PA) is increasingly recognized as a key event in the initiation of various(More)
Alk4 is a type I receptor that belongs to the transforming growth factor-beta (TGF-β) family. It takes part in the signaling of TGF-β ligands such as Activins, Gdfs, and Nodal that had been demonstrated to participate in numerous mechanisms ranging from early embryonic development to adult-tissue homeostasis. Evidences indicate that Alk4 is a key regulator(More)
Pax4 and MafA (v-maf musculoaponeurotic fibrosarcoma oncogene homolog A) are two transcription factors crucial for normal functions of islet beta cells in the mouse. Intriguingly, recent studies indicate the existence of notable difference between human and rodent islet in terms of gene expression and functions. To better understand the biological role of(More)
Loss of pancreatic β-cell maturity occurs in diabetes and insulinomas. Although both physiological and pathological stresses are known to promote β-cell dedifferentiation, little is known about the molecules involved in this process. Here we demonstrate that activinB, a transforming growth factor β (TGF-β)-related ligand, is upregulated during tumorigenesis(More)
The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further(More)
  • 1