Ramgopal Mettu

Learn More
UNLABELLED Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen(More)
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding(More)
A meta-analysis of CD4+ T cell epitope maps reveals clusters and gaps in envelope-protein (E protein) immunogenicity that can be explained by the likelihood of epitope processing, as determined by E protein three-dimensional structures. Differential processing may be at least partially responsible for variations in disease severity among arbo-flaviruses and(More)
We describe our implementation of an algorithm to maintain the connected components and the biconnected components of a graph where vertex and edge insertions are allowed. Algorithms for this problem can be applied to task decomposition in engineering design. Connected components are maintained using a disjoint set data structure and the biconnected(More)
  • 1