Ramesh Govindan

Learn More
Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the <italic>directed diffusion</italic> paradigm for such coordination. Directed diffusion is(More)
Advances in processor, memory, and radio technology will enable small and cheap nodes capable of sensing, communication, and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the <i>directed-diffusion</i> paradigm for such coordination. Directed diffusion is data-centric(More)
Making effective use of the vast amounts of data gathered by large-scale sensor networks will require scalable, self-organizing, and energy-efficient data dissemination algorithms. Previous work has identified data-centric routing as one such method. In an asso-ciated position paper [23], we argue that a companion method, data-centric storage (DCS), is also(More)
Future sensor networks will be composed of a large number of densely deployed sensors/actuators. A key feature of such networks is that their nodes are untethered and unattended. Consequently, energy efficiency is an important design consideration for these networks. Motivated by the fact that sensor network queries may often be geographical, we design and(More)
Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (<i>e.g.</i>, indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery performance: the spatio-temporal characteristics of(More)
Making effective use of the vast amounts of data gathered by largescale sensor networks (sensornets) will require scalable, self-organizing, and energy-efficient data dissemination algorithms. For sensornets, where the content of the data is more important than the identity of the node that gathers them, researchers have found it useful to move away from(More)
Networked sensors-those that coordinate amongst themselves to achieve a larger sensing task-will revolutionize information gathering and processing both in urban environments and in inhospitable terrain. The sheer numbers of these sensors and the expected dynamics in these environments present unique challenges in the design of unattended autonomous sensor(More)
Previously proposed sensor network data dissemination schemes require periodic low-rate flooding of data in order to allow recovery from failure. We consider constructing two kinds of multipaths to enable energy efficient recovery from failure of the shortest path between source and sink. Disjoint multipath has been studied in the literature. We propose a(More)
Mercator is a program that uses hop-limited probes—the same primitive used in traceroute—to infer an Internet map. It uses informed random address probing to carefully exploring the IP address space when determining router adjacencies, uses source-route capable routers wherever possible to enhance the fidelity of the resulting map, and employs novel(More)
In many sensor networks, data or events are named by attributes. Many of these attributes have scalar values, so one natural way to query events of interest is to use a <i>multi-dimensional</i> range query. An example is: "List all events whose temperature lies between 50&#176; and 60&#176;, and whose light levels lie between 10 and 15." Such queries are(More)