Ramesh Balasubramaniam

Learn More
Previous studies of paced repetitive movements with respect to an external beat have either emphasised (a) the form of movement trajectories or (b) timing errors made with respect to the external beat. The question of what kinds of movement trajectories assist timing accuracy has not previously been addressed. In an experiment involving synchronisation or(More)
In hula hooping, organized motions of the body keep the hoop in stable oscillatory motion parallel to the ground. We examined the hypothesis that the multiple degrees of freedom (DF) of the lower limbs in producing the oscillations are resolved into a few control DF. The Karhunen-Loève decomposition was applied to the kinematics of the lower limbs in three(More)
Recent investigations have revealed the kinematics of horizontal saccades are less variable near the end of the trajectory than during the course of execution. Converging evidence indicates that oculomotor networks use online sensorimotor feedback to correct for initial trajectory errors. It is also known that oculomotor networks express saccadic(More)
While much is known about sequential effects in motor timing, less is understood about whether movement parameters such as force show sequential dependencies. In this study, we examined the effect of timing constraints on repetitive unimanual force production sequences. Ten healthy participants produced a series of pinch grip forces in time to a metronome(More)
Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to(More)
We examined the influence of attentional focus and cognitive load on motor performance in a dynamic stick balancing task during the maintenance of upright posture. Dynamical analyses of postural fluctuations revealed the existence of a drift and correct mechanism, with correlational structure reflecting the demands of the stick balancing task. In contrast,(More)
We performed an experiment in which we challenged postural stability in 12 healthy subjects by providing artificial delayed visual feedback. A monitor at eye-height presented subjects with a visual representation of the location of their center-of-pressure (COP) and they were instructed to position their COP as accurately as possible on a small target.(More)
In this experiment, we examined the extent to which postural control is influenced by visual and cognitive task performance. Fourteen healthy young participants performed a balance task in eyes-open (EO) and delayed visual feedback (DVF) conditions. DVF was presented at delays ranging from 0 to 1200ms in 300ms increments. Cognitive load was implemented by a(More)
The probability distributions for changes in transverse plane fingertip speed are Lévy distributed in human pole balancing. Six subjects learned to balance a pole on their index finger over three sessions while sitting and standing. The Lévy or decay exponent decreased as a function of learning, showing reduced decay in the probability for large speed steps(More)