Raman Sankaran

Learn More
Motivated from real world problems, like object categorization, we study a particular mixed-norm regularization for Multiple Kernel Learning (MKL). It is assumed that the given set of kernels are grouped into distinct components where each component is crucial for the learning task at hand. The formulation hence employs l ∞ regularization for promoting(More)
Multiple Kernel Learning(MKL) on Support Vector Ma-chines(SVMs) has been a popular front of research in recent times due to its success in application problems like Object Categorization. This success is due to the fact that MKL has the ability to choose from a variety of feature kernels to identify the optimal kernel combination. But the initial(More)
Recent literature [1] suggests that embedding a graph on an unit sphere leads to better generalization for graph transduction. However, the choice of optimal embedding and an efficient algorithm to compute the same remains open. In this paper, we show that orthonormal representations, a class of unit-sphere graph em-beddings are PAC learnable. Existing(More)
  • 1