Raman Bahal

Learn More
MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes, and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance(More)
Peptide nucleic acids (PNAs) are a promising class of nucleic acid mimics developed in the last two decades in which the naturally occurring sugar phosphodiester backbone has been replaced by achiral N-(2-aminoethyl)glycine units (Scheme 1A). 1 In addition to their ability in hybridizing to cDNA or RNA strands, PNAs can invade double-stranded DNA. 2 Strand(More)
Peptide nucleic acids (PNAs) make up the only class of nucleic acid mimics developed to date that has been shown to be capable of invading double-helical B-form DNA. Recently, we showed that sequence limitation associated with PNA recognition can be relaxed by utilizing conformationally preorganized γ-peptide nucleic acids (γPNAs). However, like all the(More)
Developed in the early 1990s, peptide nucleic acid (PNA) has emerged as a promising class of nucleic acid mimic because of its strong binding affinity and sequence selectivity toward DNA and RNA and resistance to enzymatic degradation by proteases and nucleases; however, the main drawbacks, as compared to other classes of oligonucleotides, are water(More)
Development of general principles for designing molecules to bind sequence specifically to double-stranded DNA (dsDNA) has been a long-sought goal of bioorganic chemistry and molecular biology. [1–3] Pursuit of this goal, in the past, has generally been focused on the minor and major grooves—in large part, because of the ease of accessibility of the(More)
Peptide nucleic acids have emerged over the past two decades as a promising class of nucleic acid mimics because of their strong binding affinity and sequence selectivity toward DNA and RNA, and resistance to enzymatic degradation by proteases and nucleases. While they have been shown to be effective in regulation of gene expression in vitro, and to a small(More)
The blood disorder, β-thalassaemia, is considered an attractive target for gene correction. Site-specific triplex formation has been shown to induce DNA repair and thereby catalyse genome editing. Here we report that triplex-forming peptide nucleic acids (PNAs) substituted at the γ position plus stimulation of the stem cell factor (SCF)/c-Kit pathway(More)
Conformationally preorganized peptide nucleic acids (PNAs) have been synthesized through backbone modifications at the γ-position, where R = alanine, valine, isoleucine, and phenylalanine side chains. The effects of these side-chains on the conformations and hybridization properties of PNAs were determined using a combination of CD and UV-Vis spectroscopic(More)
Cystic fibrosis (CF) is a lethal genetic disorder most commonly caused by the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It is not readily amenable to gene therapy because of its systemic nature and challenges including in vivo gene delivery and transient gene expression. Here, we use triplex-forming PNA(More)
  • 1