Ramakant Nevatia

Learn More
We propose a network flow based optimization method for data association needed for multiple object tracking. The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost flow algorithm in the network. The network is augmented to(More)
We present a detection-based three-level hierarchical association approach to robustly track multiple objects in crowded environments from a single camera. At the low level, reliable tracklets (i.e. short tracks for further analysis) are generated by linking detection responses based on conservative affinity constraints. At the middle level, these tracklets(More)
This paper proposes a method for human detection in crowded scene from static images. An individual human is modeled as an assembly of natural body parts. We introduce edgelet features, which are a new type of silhouette oriented features. Part detectors, based on these features, are learned by a boosting method. Responses of part detectors are combined to(More)
Detection and tracking of humans in video streams is important for many applications. We present an approach to automatically detect and track multiple, possibly partially occluded humans in a walking or standing pose from a single camera, which may be stationary or moving. A human body is represented as an assembly of body parts. Part detectors are learned(More)
Tracking of humans in dynamic scenes has been an important topic of research. Most techniques, however, are limited to situations where humans appear isolated and occlusion is small. Typical methods rely on appearance models that must be acquired when the humans enter the scene and are not occluded. We present a method that can track humans in crowded(More)
We introduce an online learning approach for multitarget tracking. Detection responses are gradually associated into tracklets in multiple levels to produce final tracks. Unlike most previous approaches which only focus on producing discriminative motion and appearance models for all targets, we further consider discriminative features for distinguishing(More)
We address the problem of multi-person tracking in a complex scene from a single camera. Although trackletassociation methods have shown impressive results in several challenging datasets, discriminability of the appearance model remains a limitation. Inspired by the work of person identity recognition, we obtain discriminative appearance-based affinity(More)
3D human pose recovery is considered as a fundamental step in view-invariant human action recognition. However, inferring 3D poses from a single view usually is slow due to the large number of parameters that need to be estimated and recovered poses are often ambiguous due to the perspective projection. We present an approach that does not explicitly infer(More)
Tracking multiple humans in complex situations is challenging. The difficulties are tackled with appropriate knowledge in the form of various models in our approach. Human motion is decomposed into its global motion and limb motion. In the first part, we show how multiple human objects are segmented and their global motions are tracked in 3D using ellipsoid(More)
We describe an online approach to learn non-linear motion patterns and robust appearance models for multi-target tracking in a tracklet association framework. Unlike most previous approaches that use linear motion methods only, we online build a non-linear motion map to better explain direction changes and produce more robust motion affinities between(More)