Learn More
We propose a network flow based optimization method for data association needed for multiple object tracking. The maximum-a-posteriori (MAP) data association problem is mapped into a cost-flow network with a non-overlap constraint on trajectories. The optimal data association is found by a min-cost flow algorithm in the network. The network is augmented to(More)
Detection and tracking of humans in video streams is important for many applications. We present an approach to automatically detect and track multiple, possibly partially occluded humans in a walking or standing pose from a single camera, which may be stationary or moving. A human body is represented as an assembly of body parts. Part detectors are learned(More)
This paper proposes a method for human detection in crowded scene from static images. An individual human is modeled as an assembly of natural body parts. We introduce edgelet features, which are a new type of silhouette oriented features. Part detectors, based on these features, are learned by a boosting method. Responses of part detectors are combined to(More)
We present a detection-based three-level hierarchical association approach to robustly track multiple objects in crowded environments from a single camera. At the low level, reliable tracklets (i.e. short tracks for further analysis) are generated by linking detection responses based on conservative affinity constraints. At the middle level, these tracklets(More)
Tracking multiple humans in complex situations is challenging. The difficulties are tackled with appropriate knowledge in the form of various models in our approach. Human motion is decomposed into its global motion and limb motion. In the first part, we show how multiple human objects are segmented and their global motions are tracked in 3D using ellipsoid(More)
We present an approach for online learning of discrim-inative appearance models for robust multi-target tracking in a crowded scene from a single camera. Although much progress has been made in developing methods for optimal data association, there has been comparatively less work on the appearance models, which are key elements for good performance. Many(More)
We introduce an online learning approach for multi-target tracking. Detection responses are gradually associated into tracklets in multiple levels to produce final tracks. Unlike most previous approaches which only focus on producing discriminative motion and appearance models for all targets, we further consider discriminative features for distinguishing(More)
Detection of object of a known class is a fundamental problem of computer vision. The appearance of objects can change greatly due to illumination, view point, and articu-lation. For object classes with large intra-class variation, some divide-and-conquer strategy is necessary. Tree struc-tured classifier models have been used for multi-view multi-pose(More)