Ramak Khosravi

  • Citations Per Year
Learn More
Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with(More)
Recent advances in vascular tissue engineering have enabled a paradigm shift from ensuring short-term graft survival to focusing on long-term stability and growth potential. We present the first experimental-computational study of a tissue-engineered vascular graft (TEVG) effectively over the full lifespan of the recipient. We show that grafts implanted(More)
Many surgical interventions for cardiovascular disease are limited by the availability of autologous vessels or suboptimal performance of prosthetic materials. Tissue engineered vascular grafts show significant promise, but have yet to achieve clinical efficacy in small caliber (<5 mm) arterial applications. We previously designed cell-free elastomeric(More)
We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic(More)
Our approach for fabricating tissue-engineered vascular grafts (TEVG), applied in the surgical management of congenital heart disease, is accomplished by seeding isolated bone marrow-derived mononuclear cells (BM-MNCs) onto biodegradable scaffolds. The current method used for isolation of BM-MNCs is density centrifugation in Ficoll. This is a(More)
Continued advances in the tissue engineering of vascular grafts have enabled a paradigm shift from the desire to design for adequate suture retention, burst pressure and thrombo-resistance to the goal of achieving grafts having near native properties, including growth potential. Achieving this far more ambitious outcome will require the identification of(More)
  • 1