Learn More
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae,(More)
BACKGROUND Much of the morphological diversity in eukaryotes results from differential regulation of gene expression in which transcription factors (TFs) play a central role. The nematode Caenorhabditis elegans is an established model organism for the study of the roles of TFs in controlling the spatiotemporal pattern of gene expression. Using the fully(More)
BACKGROUND Karl Ernst Von Baer noted that species tend to show greater morphological divergence in later stages of development when compared to earlier stages. Darwin originally interpreted these observations via a selectionist framework, suggesting that divergence should be greatest during ontogenic stages in which organisms experienced varying 'conditions(More)
The resolution of the paradoxes surrounding the evolutionary origins and maintenance of sexual reproduction has been a major focus in biology. The operation of sexual selection-which is very common among multicellular organisms-has been proposed as an important factor in the maintenance of sex, though in order for this hypothesis to hold, the strength of(More)
We investigated the genetic architecture of variation in male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila. Twenty-four generations of divergent artificial selection for sex comb bristle number in a heterogeneous population of Drosophila melanogaster resulted in a significant response that was more pronounced in the(More)
BACKGROUND Speculation regarding the importance of changes in gene regulation in determining major phylogenetic patterns continues to accrue, despite a lack of broad-scale comparative studies examining how patterns of gene expression vary during development. Comparative transcriptional profiling of adult interspecific hybrids and their parental species has(More)
Human menopause is an unsolved evolutionary puzzle, and relationships among the factors that produced it remain understood poorly. Classic theory, involving a one-sex (female) model of human demography, suggests that genes imparting deleterious effects on post-reproductive survival will accumulate. Thus, a 'death barrier' should emerge beyond the maximum(More)
The tempo and mode of evolutionary change during speciation have remained contentious until recently. While much of the evidence claiming speciation is an abrupt and rapid process comes from fossil data, recent molecular phylogenetics show that the background of gradual evolution is often broken by accelerated rates of molecular evolution during speciation.(More)
Males have evolved a variety of behavioral, morphological, and physiological traits to manipulate their mates in order to maximize their chances of success. These traits are bound to influence how females respond to male behaviors and influence the nature of sexual selection/conflict. A common consequence of aggressive male mating strategies in Drosophila(More)
The mating success of larger male Drosophila melanogaster in the laboratory and the wild has been traditionally been explained by female choice, even though the reasons are generally hard to reconcile. Female choice can explain this success by virtue of females taking less time to mate with preferred males, but so can the more aggressive or persistent(More)