Learn More
An understanding of the basic structure, viscoelastic properties and interactions of mucin glycoproteins is of considerable interest to food science because of the important protective role that these macromolecules play in gastric physiology. The polymeric/colloidal behavior of mucins is complicated due to their large size (2 – 50 MDa) and complex(More)
We have developed a novel optical method for observing submicrometer intracellular structures in living cells, which is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light-scattering spectroscopy. CLASS microscopy requires no(More)
The ulcer-causing gastric pathogen Helicobacter pylori is the only bacterium known to colonize the harsh acidic environment of the human stomach. H. pylori survives in acidic conditions by producing urease, which catalyzes hydrolysis of urea to yield ammonia thus elevating the pH of its environment. However, the manner in which H. pylori is able to swim(More)
Gastric mucin, a high molecular weight glycoprotein, is responsible for providing the gel-forming properties and protective function of the gastric mucus layer. Bulk rheology measurements in the linear viscoelastic regime show that gastric mucin undergoes a pH-dependent sol-gel transition from a viscoelastic solution at neutral pH to a soft viscoelastic gel(More)
Gastric mucin is a glycoprotein known to undergo a pH-dependent sol-gel transition that is crucial to the protective function of the gastric mucus layer in mammalian stomachs. We present microscope-based dynamic light scattering data on porcine gastric mucin at pH 6 (solution) and pH 2 (gel) with and without the presence of tracer particles. The data(More)
The HCl in the mammalian stomach is concentrated enough to digest the stomach itself, yet the gastric epithelium remains undamaged. One protective factor is gastric mucus, which forms a protective layer over the surface epithelium and acts as a diffusion barrier Bicarbonate ions secreted by the gastric epithelium are trapped in the mucus gel, establishing a(More)
We report the first Raman spectroscopic study of the glycosaminoglycans chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid, both in solution and in the solid state. To aid in spectral identification, infrared spectra were also recorded from films of these samples. Vibrational frequencies for important functional groups like the sulfate groups,(More)
The bacterium Helicobacter pylori (H. pylori), has evolved to survive in the highly acidic environment of the stomach and colonize on the epithelial surface of the gastric mucosa. Its pathogenic effects are well known to cause gastritis, peptic ulcers, and gastric cancer. In order to infect the stomach and establish colonies on the mucus epithelial surface,(More)
We present computer simulation results of a solution of multiblock copolymers, and show that a network can form under certain conditions. This network formation is due to a bridging effect, which exists for multiblock but not for diblock copolymers. Because of this special property, we suggest that multiblock copolymers may be used quite generally to(More)
Time-resolved small-angle X-ray scattering (SAXS) was used to examine the kinetics of the transition from hexagonal (hex) cylinders to body-centered cubic (bcc) spheres at various temperatures in poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS) in mineral oil, a selective solvent for the middle ethylene-co-butylene (EB) block. Temperature-ramp SAXS and(More)