Learn More
We present a formalism to compute the probability of an amino acid sequence conformation being native-like, given a set of pairwise atom-atom distances. The formalism is used to derive three discriminatory functions with different types of representations for the atom-atom contacts observed in a database of protein structures. These functions include two(More)
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the(More)
The development of an energy or scoring function for protein structure prediction is greatly enhanced by testing the function on a set of computer-generated conformations (decoys) to determine whether it can readily distinguish native-like conformations from nonnative ones. We have created "Decoys 'R' Us," a database containing many such sets of(More)
Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm(More)
A discriminatory function based on a statistical analysis of atomic contacts in protein structures is used for selecting side chain rotamers given a peptide main chain. The function allows us to rank different possible side chain conformations on the basis of contacts between side chain atoms and atoms in the environment. We compare the differences in(More)
We present a hierarchical method to predict protein tertiary structure models from sequence. We start with complete enumeration of conformations using a simple tetrahedral lattice model. We then build conformations with increasing detail, and at each step select a subset of conformations using empirical energy functions with increasing complexity. After(More)
The problem of protein tertiary structure prediction from primary sequence can be separated into two subproblems: generation of a library of possible folds and specification of a best fold given the library. A distance geometry procedure based on random pairwise metrization with good sampling properties was used to generate a library of 500 possible(More)
MOTIVATION The discovery of solid-binding peptide sequences is accelerating along with their practical applications in biotechnology and materials sciences. A better understanding of the relationships between the peptide sequences and their binding affinities or specificities will enable further design of novel peptides with selected properties of interest(More)
De novo protein structure prediction methods attempt to predict tertiary structures from sequences based on general principles that govern protein folding energetics and/or statistical tendencies of conformational features that native structures acquire, without the use of explicit templates. A general paradigm for de novo prediction involves sampling the(More)
The interconnected nature of interactions in protein structures appears to be the major hurdle in preventing the construction of accurate comparative models. We present an algorithm that uses graph theory to handle this problem. Each possible conformation of a residue in an amino acid sequence is represented using the notion of a node in a graph. Each node(More)