Learn More
— We propose a feedback scheme for preparation of photon number states in a microwave cavity. Quantum Non-Demolition (QND) measurements of the cavity field and a control signal consisting of a microwave pulse injected into the cavity are used to drive the system towards a desired target photon number state. Unlike previous work, we do not use the Galerkin(More)
In this paper we study the semi-global (approximate) state feedback stabilization of an infinite dimensional quantum stochastic system towards a target state. A discrete-time Markov chain on an infinite-dimensional Hilbert space is used to model the dynamics of a quantum optical cavity. We can choose an (unbounded) strict Lyapunov function that is minimized(More)
In this paper we study the semi-global (approximate) state feedback stabilization of an infinite dimensional quantum stochastic system towards a target state. A discrete-time Markov chain on an infinite-dimensional Hilbert space is used to model the dynamics of a quantum optical cavity. We can choose an (unbounded) strict Lyapunov function that is minimized(More)
— The objective of this work is to develop a recursive, discrete time quantum filtering equation for a system that interacts with a probe, on which measurements are performed according to the Positive Operator Valued Measures (POVMs) framework. POVMs are the most general measurements one can make on a quantum system and although in principle they can be(More)
  • 1