Learn More
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect(More)
Posttranslational core histone acetylation is established and maintained by histone acetyltransferases and deacetylases. Both have been identified as important transcriptional regulators in various eukaryotic systems. In contrast to nonplant systems where only RPD3-related histone deacetylases (HD) have been characterized so far, maize embryos contain three(More)
Multiple forms of histone acetyltransferases and histone deacetylases, which have been separated and characterized in the accompanying manuscript (López-Rodas, G., Georgieva, E. I., Sendra, R., and Loidl, P. (1991) J. Biol. Chem. 266, 18745-18750), together with in vivo acetate incorporation, were studied during the germination of Zea mays embryos. Total(More)
In order to protect and preserve the integrity of the genome, eukaryotic cells have developed accurate DNA repair pathways involving a coordinated network of DNA repair and epigenetic factors. The DNA damage response has to proceed in the context of chromatin, a packaged and compact structure that is flexible enough to regulate the accession of the DNA(More)
Epigenetics represents the way by which the environment is able to program the genome; there are three main levels of epigenetic control on genome: DNA methylation, post-translational histone modification and microRNA expression. The term Epigenetics has been widened by NIH to include "both heritable changes in gene activity and expression but also stable,(More)
Core histones can be modified by reversible, posttranslational acetylation of specific lysine residues within the N-terminal protein domains. The dynamic equilibrium of acetylation is maintained by two enzyme activities, histone acetyltransferase and histone deacetylase. Recent data on histone deacetylases and on anionic motifs in chromatin- or DNA-binding(More)
Saccharomyces cerevisiae Hat1, together with Hat2 and Hif1, forms the histone acetyltransferase B (HAT-B) complex. Previous studies performed with synthetic N-terminal histone H4 peptides found that whereas the HAT-B complex acetylates only Lys12, recombinant Hat1 is able to modify Lys12 and Lys5. Here we demonstrate that both Lys12 and Lys5 of soluble,(More)
Multiple enzyme forms of histone deacetylase and histone acetyltransferase exist in germinating maize embryos. We analyzed the association of the different enzymes to chromatin by ion exchange chromatography of subcellular fractions from different time points of embryo germination. The vast majority of histone deacetylase HD-1A was not bound to chromatin,(More)
DEAE-Sepharose chromatography of extracts from Zea mays meristematic cells revealed multiple histone acetyltransferase and histone deacetylase enzyme forms. An improved method for nuclear isolation allowed us to discriminate nuclear and cytoplasmic enzymes. Two nuclear histone acetyltransferases, A1 and A2, a cytoplasmic B-enzyme and two nuclear histone(More)
Histone acetyltransferase B from pea embryonic axes has been purified approximately 300-fold by a combination of chromatographic procedures, including affinity chromatography on histone-agarose. The enzyme preparation has been used for the in vitro transfer of acetyl groups from [1-14C]acetyl-CoA to non-acetylated pea histone H4. Up to three acetyl groups(More)