Ralph Hendrik Scheicher

Learn More
We report the results of our first-principles study based on density functional theory on the interaction of the nucleic acid base molecules adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U), with a single-walled carbon nanotube (CNT). Specifically, the focus is on the physisorption of base molecules on the outer wall of a (5, 0) metallic(More)
Li-Na ternary amidoborane, Na[Li(NH(2)BH(3))(2)], was recently synthesized by reacting LiH and NaH with NH(3)BH(3). This mixed-cation amidoborane shows improved dehydrogenation performance compared to that of single-cation amidoboranes, i.e., LiNH(2)BH(3) and NaNH(2)BH(3). In this paper, we synthesized the Li-Na ternary amidoborane by blending and(More)
We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic(More)
Sensitivity of Boron Nitride Nanotubes toward Biomolecules of Different Polarities Saikat Mukhopadhyay, Ralph H. Scheicher, Ravindra Pandey,* and Shashi P. Karna* Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden U.S. Army(More)
The fabrication of nanopores in atomically thin graphene has recently been achieved, and translocation of DNA has been demonstrated. Taken together with an earlier proposal to use graphene nanogaps for the purpose of DNA sequencing, this approach can resolve the technical problem of achieving single-base resolution in electronic nucleobase detection. We(More)
The interaction strength of sodium ions (Na(+)) with cellulose is investigated from first principles for varying degrees of water content. We find that the interaction of water molecules and Na(+) can be studied independently at the various OH groups in cellulose which we categorize as two different types. In the absence of water, Na(+) forms strong ionic(More)
A synergistic approach involving experiment and first-principles theory not only shows that carbon nanostructures can be used as catalysts for hydrogen uptake and release in complex metal hydrides such as sodium alanate, NaAlH(4), but also provides an unambiguous understanding of how the catalysts work. Here we show that the stability of NaAlH(4) originates(More)
We investigate the adsorption of the nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U)-on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first-principles density functional theory calculations. The calculated binding energy shows the order: G > A approximately C(More)
The long-standing prediction that hydrogen can assume a metallic state under high pressure, combined with arguments put forward more recently that this state might even be superconducting up to high temperatures, continues to spur tremendous research activities toward the experimental realization of metallic hydrogen. These efforts have however so far been(More)
Noble metals adopt close-packed structures at ambient pressure and rarely undergo structural transformation at high pressures. Platinum (Pt) is normally considered to be unreactive and is therefore not expected to form hydrides under pressure. We predict that platinum hydride (PtH) has a lower enthalpy than its constituents solid Pt and molecular hydrogen(More)