Ralph Hendrik Scheicher

Learn More
We report the results of our first-principles investigation on the interaction of the nucleobases adenine ͑A͒, cytosine ͑C͒, guanine ͑G͒, thymine ͑T͒, and uracil ͑U͒ with graphene, carried out within the density-functional theory framework, with additional calculations utilizing Hartree-Fock plus second-order Møller-Plesset perturbation theory. The(More)
The fabrication of nanopores in atomically thin graphene has recently been achieved, and translocation of DNA has been demonstrated. Taken together with an earlier proposal to use graphene nanogaps for the purpose of DNA sequencing, this approach can resolve the technical problem of achieving single-base resolution in electronic nucleobase detection. We(More)
We report the results of our first-principles study based on density functional theory on the interaction of the nucleic acid base molecules adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U), with a single-walled carbon nanotube (CNT). Specifically, the focus is on the physisorption of base molecules on the outer wall of a (5, 0) metallic(More)
We report the results of a theoretical study of graphene/BN/graphene and BN/graphene/BN trilayers using the van-der-Waals-corrected density functional theory in conjunction with the non-equilibrium Green's Function method. These trilayer systems formed from graphene and BN exhibit distinct stacking-dependent features in their ground state electronic(More)
We investigate the adsorption of the nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U)-on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first-principles density functional theory calculations. The calculated binding energy shows the order: G > A approximately C(More)
A marked difference in spin relaxation behavior due to hemoglobin magnetism was found for positive muons (μ(+)) in deoxyhemoglobin in comparison with that observed in oxyhemoglobin in aqueous solution at room temperature under zero and external longitudinal magnetic fields upto 0.4 Tesla. At the same time, small but significant unique relaxation pattern was(More)
With the aim of improving nanopore-based DNA sequencing, we explored the effects of functionalizing the embedded gold electrodes with purine and pyrimidine molecules. Hydrogen bonds formed between the molecular probe and target bases stabilize the scanned DNA unit against thermal fluctuations and thus greatly reduce noise in the current signal. The results(More)
Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA(More)
We investigate the influence of uniaxial strain on the site occupancy of hydrogen in vanadium, using density functional theory. The site occupancy is found to be strongly influenced by the strain state of the lattice. The results provide the conceptual framework for the atomistic description of the observed hysteresis in the to phase transition in bulk, as(More)