Ralph G. Andrzejak

Learn More
We compare dynamical properties of brain electrical activity from different recording regions and from different physiological and pathological brain states. Using the nonlinear prediction error and an estimate of an effective correlation dimension in combination with the method of iterative amplitude adjusted surrogate data, we analyze sets of(More)
The sudden and apparently unpredictable nature of seizures is one of the most disabling aspects of the disease epilepsy. A method capable of predicting the occurrence of seizures from the electroencephalogram (EEG) of epilepsy patients would open new therapeutic possibilities. Since the 1970s investigations on the predictability of seizures have advanced(More)
OBJECTIVE An important issue in epileptology is the question whether information extracted from the EEG of epilepsy patients can be used for the prediction of seizures. Several studies have claimed evidence for the existence of a pre-seizure state that can be detected using different characterizing measures. In this paper, we evaluate the predictability of(More)
The exact mechanisms leading to the occurrence of epileptic seizures in humans are still poorly understood. It is widely accepted, however, that the process of seizure generation is closely associated with an abnormal synchronization of neurons. In order to investigate this process, we here measure phase synchronization between different regions of the(More)
To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively. We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from pharmacoresistant focal-onset(More)
The theory of deterministic chaos addresses simple deterministic dynamics in which nonlinearity gives rise to complex temporal behavior. Although biological neuronal networks such as the brain are highly complicated, a number of studies provide growing evidence that nonlinear time series analysis of brain electrical activity in patients with epilepsy is(More)
The concept of surrogates allows testing results from time series analysis against specified null hypotheses. In application to bivariate model dynamics we here compare different types of surrogates, each designed to test against a different null hypothesis, e.g., an underlying bivariate linear stochastic process. Two measures that aim at a characterization(More)
A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter(More)
The question whether information extracted from the electroencephalogram (EEG) of epilepsy patients can be used for the prediction of seizures has recently attracted much attention. Several studies have reported evidence for the existence of a preseizure state that can be detected using different measures derived from the theory of dynamical systems. Most(More)