Learn More
This paper addresses the development of a unified framework for quantifying hysteresis and con-stitutive nonlinearities inherent to ferroelectric, ferromagnetic and ferroelastic materials. Because the mechanisms which produce hysteresis vary substantially at the microscopic level, it is more natural to initiate model development at the mesoscopic, or(More)
A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modications included to incorporate(More)
This paper addresses the modeling of hysteresis in magnetostrictive transducers. This is considered in the context of control applications which require an accurate characterization of the relation between input currents and strains output by the transducer. This relation typically exhibits significant nonlinearities and hysteresis due to inherent(More)
This paper addresses the development of a free energy model for magnetostrictive transducers operating in hysteretic and nonlinear regimes. Such models are required both for material and system characterization and for model-based control design. The model is constructed in two steps. In the first, Helmholtz and Gibbs free energy relations are constructed(More)