Learn More
Recognition of emotion draws on a distributed set of structures that include the occipitotemporal neocortex, amygdala, orbitofrontal cortex and right frontoparietal cortices. Recognition of fear may draw especially on the amygdala and the detection of disgust may rely on the insula and basal ganglia. Two important mechanisms for recognition of emotions are(More)
Recognizing emotion from facial expressions draws on diverse psychological processes implemented in a large array of neural structures. Studies using evoked potentials, lesions, and functional imaging have begun to elucidate some of the mechanisms. Early perceptual processing of faces draws on cortices in occipital and temporal lobes that construct detailed(More)
Ten years ago, we reported that SM, a patient with rare bilateral amygdala damage, showed an intriguing impairment in her ability to recognize fear from facial expressions. Since then, the importance of the amygdala in processing information about facial emotions has been borne out by a number of lesion and functional imaging studies. Yet the mechanism by(More)
Studies in animals have shown that the amygdala receives highly processed visual input, contains neurons that respond selectively to faces, and that it participates in emotion and social behaviour. Although studies in epileptic patients support its role in emotion, determination of the amygdala's function in humans has been hampered by the rarity of(More)
We are an intensely social species--it has been argued that our social nature defines what makes us human, what makes us conscious or what gave us our large brains. As a new field, the social brain sciences are probing the neural underpinnings of social behaviour and have produced a banquet of data that are both tantalizing and deeply puzzling. We are(More)
Recent studies have begun to elucidate the roles played in social cognition by specific neural structures, genes, and neurotransmitter systems. Cortical regions in the temporal lobe participate in perceiving socially relevant stimuli, whereas the amygdala, right somatosensory cortices, orbitofrontal cortices, and cingulate cortices all participate in(More)
A subcortical pathway through the superior colliculus and pulvinar to the amygdala is commonly assumed to mediate the non-conscious processing of affective visual stimuli. We review anatomical and physiological data that argue against the notion that such a pathway plays a prominent part in processing affective visual stimuli in humans. Instead, we propose(More)
A patient with selective bilateral damage to the amygdala did not acquire conditioned autonomic responses to visual or auditory stimuli but did acquire the declarative facts about which visual or auditory stimuli were paired with the unconditioned stimulus. By contrast, a patient with selective bilateral damage to the hippocampus failed to acquire the facts(More)
The amygdala has received intense recent attention from neuroscientists investigating its function at the molecular, cellular, systems, cognitive, and clinical level. It clearly contributes to processing emotionally and socially relevant information, yet a unifying description and computational account have been lacking. The difficulty of tying together the(More)
Although lesion and functional imaging studies have broadly implicated the right hemisphere in the recognition of emotion, neither the underlying processes nor the precise anatomical correlates are well understood. We addressed these two issues in a quantitative study of 108 subjects with focal brain lesions, using three different tasks that assessed the(More)