Ralph A. Skomski

Learn More
Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also(More)
Rare-earth transition-metal (R-TM) alloys show superior permanent magnetic properties in the bulk, but the synthesis and application of R-TM nanoparticles remains a challenge due to the requirement of high-temperature annealing above about 800 °C for alloy formation and subsequent crystalline ordering. Here we report a single-step method to produce highly(More)
This study presents the structural and magnetic properties of melt-spun , , and alloys. Appreciable permanent-magnet properties with a magnetocrystalline anisotropy of about 9.6–16.5 , a magnetic polarization –10.6 kG, and coercivities –3.0 kOe were obtained by varying the composition of these alloys. Structural analysis reveals that the positions of x-ray(More)
Magnetic nanoparticles smaller than ~15 nm in diameter and with high magnetocrystalline anisotropies K1 ≥ 1 MJ m can be used as building blocks for next-generation permanent magnets. Advances in processing steps are discussed, such as self-assembly, alignment of the easy axes and appropriate nanostructuring that will enable the fabrication of densely packed(More)
Recent trends in the emerging field of surface-supported magnetic nanostructures are reviewed. Current strategies for nanostructure synthesis are summarized, followed by a predominantly theoretical description of magnetic phenomena in surface magnetic structures and a review of experimental research in this field. Emphasis is on Fe- or Co-based(More)
The performance of hard-magnetic nanostructures is investigated by analyzing the size and geometry dependence of thin-film hysteresis loops. Compared to bulk magnets, weight and volume are much less important, but we find that the energy product remains the main figure of merit down to very small features sizes. However, hysteresis loops are much easier to(More)