Learn More
Cell divisions that produce progeny differing in their patterns of gene expression are key to the development of multicellular organisms. In the budding yeast Saccharomyces cerevisiae, mother cells but not daughter cells can switch mating type because they selectively express the HO endonuclease gene. This asymmetry is due to the preferential accumulation(More)
  • R P Jansen
  • 1999
It has become evident over the past years that a large fraction of messenger RNAs is tightly associated with the cytoskeleton. Whereas microtubules are involved in RNA-cytoskeletal association in large cells like oocytes, neurons, or oligodendrocytes, microfilaments play the major role in smaller somatic cell types. Association of RNA with cytoskeletal(More)
Asymmetric distribution of cytoplasmic proteins and messenger RNAs has been implicated in several instances of cell differentiation. Microtubules have been suggested to direct mRNA localization in Drosophila and Xenopus oocytes but motor proteins that might transport mRNAs have not yet been identified. Recent data imply that in Drosophila, Caenorhabditis(More)
The adaptor protein Miranda plays a pivotal role in the asymmetric cell division of neuroblasts by asymmetrically segregating key differentiation factors. Miranda localization requires Myosin VI and Myosin II. The apical-then-basal localization pattern of Miranda detected in fixed tissue, and the localization defects in embryos lacking Myosin VI, suggest(More)
To determine whether patients with acquired asplastic anemia (AA) exhibit clonal hematopoiesis, we used restriction fragment length polymorphisms of the X-linked genes phosphoglycerate kinase (PGK1) and hypoxanthine phosphoribosyltransferase (HPRT) and the X-linked probe M27 beta. Of the 19 female patients studied, 18 (95%) patients were informative for at(More)
  • 1