Learn More
Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies(More)
Brain-derived neurotrophic factor (BDNF) plays a crucial role for the survival of visceral sensory neurons during development. However, the physiological sources and the function of BDNF in the adult viscera are poorly described. We have investigated the cellular sources and the potential role of BDNF in adult murine viscera. We found markedly different(More)
The presence of melanin in spleens of black C57BL/6 mice has been known for long. Although its origin and biological functions are still obscure, the relation of splenic melanin to the hair follicle and skin pigmentation was suggested. Here, we demonstrated using for the first time electron paramagnetic resonance spectroscopy that black-spotted C57BL/6(More)
BACKGROUND The skin is responsible for forming a variety of epidermal structures that differ amongst vertebrates. In each case the specific structure (for example scale, feather or hair) arises from an epidermal placode as a result of epithelial-mesenchymal interactions with the underlying dermal mesenchyme. Expression of members of the Wnt, Hedgehog and(More)
The skin and its major appendages are prominent target organs and potent sources of key players along the classical hypothalamic-pituitary axis, such as corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and alpha melanocyte stimulating hormone (alpha-MSH), and even express key steroidogenic enzymes. Therefore, it may have(More)
Human skin expresses elements of the hypothalamo-pituitary-adrenal (HPA) axis including pro-opiomelanocortin (POMC), corticotropin releasing hormone (CRH), the CRH receptor-1 (CRH-R1), key enzymes of corticosteroid synthesis and synthesizes glucocorticoids. Expression of these elements is organized in functional, cell type-specific regulatory loops, which(More)
Emerging research indicates that central-nervous stress perception is translated to peripheral tissues such as the skin not only via classical stress hormones but also via neurotrophins and neuropeptides. This can result in neurogenic inflammation, which is likely to contribute to the triggering and/aggravation of immunodermatoses. Although the existence of(More)
Immune privilege (IP) is important in maintaining ocular health. Understanding the mechanism underlying this dynamic state would assist in treating inflammatory eye diseases. Despite substantial progress in defining eye IP mechanisms, because of the scarcity of human ocular tissue for research purposes, most of what we know about ocular IP is based on(More)
This Review highlights selected frontiers in pruritus research and focuses on recently attained insights into the neurophysiological, neuroimmunological, and neuroendocrine mechanisms underlying skin-derived itch (pruritogenic pruritus), which may affect future antipruritic strategies. Special attention is paid to newly identified itch-specific neuronal(More)
Prolactin (PRL), one of the most diverse regulators in mammalian biology, is produced in both human skin and hair follicles. Important advances in our understanding of the intracutaneous regulation and functions of PRL have recently been made using the serum-free skin and hair follicle organ culture technique. Given that human skin is the largest peripheral(More)