Learn More
Currents were obtained from single sodium channels in outside-out excised patches of membrane from the cell line GH3. The currents were examined in control patches and in patches treated with N- bromoacetamide ( NBA ) to remove inactivation. The single-channel current-voltage relationship was linear over the range -60 to + 10 mV, and was unaffected by NBA .(More)
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum(More)
Single channel currents were obtained from voltage-activated sodium channels in outside-out patches of tissue-cultured GH3 cells, a clonal line from rat pituitary gland. In membrane patches where the probability of overlapping openings was low, the open time histograms were well fit by a single exponential. Most analysis was done on a patch with exactly one(More)
We have studied the effect of N-bromoacetamide (NBA) on the behavior of single sodium channel currents in excised patches of rat myotube membrane at 10 degree C. Inward sodium currents were activated by voltage steps from holding potentials of about -100 mV to test potentials of -40 mV. The cytoplasmic-face solution was isotonic CsF. Application of NBA or(More)
The process underlying the opening and closing of ionic channels in biological or artificial lipid membranes can be modeled kinetically as a time-homogeneous Markov chain. The elements of the chain are kinetic states that can be either open or closed. A maximum likelihood procedure is described for estimating the transition rates between these states from(More)
The estimation of the number of channels in a patch was assumed to be equivalent to the estimation of the binomial parameter n. Seven estimators were evaluated, using data sets simulated for a range of parameters appropriate for single channel recording experiments. No single estimator was best for all parameters; a combination of estimators is a possible(More)
The whole cell patch-clamp technique, in both standard and perforated patch configurations, was used to study the influence of Na+-Ca++ exchange on rundown of voltage-gated Ca++ currents and on the duration of tail currents mediated by Ca++-dependent Cl- channels. Ca++ currents were studied in GH3 pituitary cells; Ca++-dependent Cl- currents were studied in(More)
Voltage-dependent Na conductance of rat myotubes was studied by patch recordings of single-channels. The patches were excised from the cell with the patch electrode, and the cytoplasmic surface was bathed in either CsF or tetramethylammonium (TMA)-F. Inward currents were examined from -20 to -50 mV. In this range Cs and TMA both appeared to be nearly(More)
Excitability is generated in developing skeletal muscle by the incorporation of sodium-selective ion channels into the surface membrane. Whole-cell and patch voltage-clamp recording from myotubes and their embryologic precursors, myoblasts, indicated that voltage-activated sodium current in myoblasts was more resistant to block by tetrodotoxin (TTX) than(More)