Learn More
Springtails, arthropods who live in soil, in decaying material, and on plants, have adapted to demanding conditions by evolving extremely effective and robust anti-adhesive skin patterns. However, details of these unique properties and their structural basis are still unknown. Here we demonstrate that collembolan skin can resist wetting by many organic(More)
Collembola (springtails) are soil arthropods, representing the most widespread hexapod group worldwide. Being skin-breathing animals, Collembola evolved special cuticular patterns, which are robust and antiadhesive allowing cuticular respiration under humid conditions in the soil environment. Details about function and formation of these unique cuticle(More)
The objective of this retrospective study was to investigate the horizontal vestibulo-ocular reflex (hVOR) pathway with caloric test (low-frequency hVOR) and video head impulse test (vHIT) (high-frequency hVOR) in patients with sporadic vestibular schwannoma (69 patients, 27–86 years, mean age 58.1 years) and to compare both test methods in terms of their(More)
Springtails (Collembola) are wingless arthropods adapted to cutaneous respiration in temporarily rain-flooded habitats. They immediately form a plastron, protecting them against suffocation upon immersion into water and even low-surface-tension liquids such as alkanes. Recent experimental studies revealed a high-pressure resistance of such plastrons against(More)
Waterproof and self-cleaning surfaces continue to attract much attention as they can be instrumental in various different technologies. Such surfaces are typically rough, allowing liquids to contact only the outermost tops of their asperities, with air being entrapped underneath. The formed solid-liquid-air interface is metastable and, hence, can be forced(More)
Substrate topography can have profound effects on initial bacterial adhesion during biofilm formation. We applied Staphylococcus epidermidis and Escherichia coli cells onto periodically structured substrates with different structure dimensions, structure types and wetting properties. We found a strong dependence of cell retention on the structure dimensions(More)