Ralf Heermann

Learn More
The KdpD/KdpE two-component system of Escherichia coli activates the expression of the kdpFABC operon encoding the high-affinity K(+) uptake system KdpFABC in response to K(+) limitation or salt stress. Earlier, it was proposed that the histidine kinase KdpD is a turgor sensor; recent studies suggest that KdpD integrates three chemical stimuli from the(More)
Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only(More)
A mathematical model for the KdpD/KdpE two-component system is presented and its dynamical behavior is analyzed. KdpD and KdpE regulate expression of the kdpFABC operon encoding the high affinity K+ uptake system KdpFABC of Escherichia coli. The model is validated in a two step procedure: (i) the elements of the signal transduction part are reconstructed in(More)
Ultrafast lasers have become a promising tool for micromachining and extremely precise ablation of all kinds of materials. Due to the low energy threshold, thermal and mechanical side effects are limited to the sub m range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the(More)
Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and(More)
Two-component systems, composed of a histidine kinase (HK) and a response regulator (RR), are the major signal transduction devices in bacteria. Originally it was thought that these two components function as linear, phosphorylation-driven stimulus-response system. Here, we will review how accessory proteins are employed by HKs and RRs to mediate signal(More)
Bacteria communicate via small diffusible molecules and thereby mediate group-coordinated behavior, a process referred to as quorum sensing. The prototypical quorum sensing system found in Gram-negative bacteria consists of a LuxI-type autoinducer synthase that produces N-acyl homoserine lactones (AHLs) as signals and a LuxR-type receptor that detects the(More)
Proteins EI(Ntr), NPr and IIA(Ntr) form a phosphoryl group transfer chain (Ntr-PTS) working in parallel to the phosphoenolpyruvate:carbohydrate phosphotransferase system (transport-PTS) in Escherichia coli. Recently, it was shown that dephosphorylated IIA(Ntr) binds and inhibits TrkA, a low-affinity potassium transporter. Here we report that the Ntr-PTS(More)
The sensor kinase/response regulator system KdpD/KdpE of Escherichia coli regulates expression of the kdpFABC operon, which encodes the high affinity K+ transport system KdpFABC. The membrane-bound sensor kinase KdpD consists of an N-terminal input domain (comprising a large cytoplasmic domain and four transmembrane domains) and a cytoplasmic C-terminal(More)
Escherichia coli responds rapidly to K+-limitation or high osmolarity by induction of the kdpFABC operon coding for the high affinity K+-translocating Kdp-ATPase. This process is controlled by the membrane-bound histidine kinase KdpD and the response regulator KdpE. Here, it is demonstrated that replacements of the native Cys residues at positions 409, 852,(More)