Learn More
We present photon beam diffusion, an efficient numerical method for accurately rendering translucent materials. Our approach interprets incident light as a continuous beam of photons inside the material. Numerically integrating diffusion from such extended sources has long been assumed computationally prohibitive, leading to the ubiquitous single-depth(More)
We introduce a low-cost and compact spectral imaging camera design based on unmodified consumer cameras and a custom camera objective. The device can be used in a high-resolution configuration that measures the spectrum of a column of an imaged scene with up to 0.8 nm spectral resolution, rivalling commercial non-imaging spectrometers, and a mid-resolution(More)
This paper introduces a technique for rendering animated grass in real time. The technique uses front-to-back compositing of implicitly defined grass slices in a fragment shader and therefore significantly reduces the overhead associated with common vegetation rendering systems. We also introduce a texture-based animation scheme that combines global wind(More)
This paper presents a new shading model for real-time rendering of plant leaves that reproduces all important attributes of a leaf and allows for a large number of leaves to be shaded. In particular, we use a physically based model for accurate subsurface scattering on the translucent side of directly lit leaves. For real-time rendering of this model, we(More)
We present a fast and compact representation of a skylight model for spherical harmonics lighting, especially for outdoor scenes. This representation allows dynamically changing the sun position and weather conditions on a per frame basis. We chose the most used model in real-time graphics, the Preetham skylight model, because it can deliver both realistic(More)
Irradiance normal mapping is a method to combine two popular techniques, light mapping and normal mapping, and is used in games such as Half-Life 2 or Halo 3. This combination allows using low-resolution light caching on surfaces with only a few coefficients which are evaluated by normal maps to render spatial high-frequency changes in the lighting. Though(More)
Vegetation rendering and animation in real-time applications still pose a significant problem due to the inherent complexity of plants. Both the high geometric complexity and intricate light transport require specialized techniques to achieve high-quality rendering of vegetation in real time. This thesis presents new algorithms that address various areas of(More)
We address the problem of modeling and rendering granular materials---such as large structures made of sand, snow, or sugar---where an aggregate object is composed of many randomly oriented, but discernible grains. These materials pose a particular challenge as the complex scattering properties of individual grains, and their packing arrangement, can have a(More)
We propose a new method for the fast computation of light maps using a many-light global-illumination solution. A complete scene can be light mapped on the order of seconds to minutes, allowing fast and consistent previews for editing or even generation at loading time. In our method, virtual point lights are clustered into a set of virtual polygon lights,(More)