Rakesh Kumar Seth

Learn More
Role of cytochrome-c in insect cell apoptosis is highly controversial, with many earlier reports suggesting lack of involvement of mitochondrial factors in Drosophila while more recent studies have indicated otherwise, thus warranting more in-depth studies of insect cell apoptosis. In the present study, we investigated mitochondrial involvement during(More)
PURPOSE Lepidopteran insect cells are known to exhibit very high radioresistance. Although very effective DNA excision-repair has been proposed as a contributing factor, a detailed understanding of insect cell radiation responses has not yet been obtained. Therefore, the study was carried out to understand the in vitro radiation responses of Sf9(More)
PURPOSE To investigate homology and stress response of p53 (a 53 kDa tumor suppressor protein) orthologue in Sf9 Lepidopteran insect cell line that exhibits very high radioresistance. MATERIALS AND METHODS Western immunoblotting, immunoprecipitation, degenerate RT-PCR (reverse transcription-polymerase chain reaction), electrophoretic gel mobility shift(More)
Previous studies on various insect cell lines have displayed very high radioresistance in Lepidoptera (butterflies and moths) as compared to mammals as well as other orders of Insecta including Diptera. Since NOS is known to modulate cellular radiation sensitivity, we carried out in silico analysis of Lepidopteran NOS and compared its structural and(More)
Lepidopteran insects/insect cells display 50-100 times higher radioresistance than humans, and are evolutionarily closest to mammals amongst all radioresistant organisms known. Compared to mammalian cells, Lepidopteran cells (TN-368, Sf9) display more efficient antioxidant system and DNA repair and suffer considerably less radiation-induced DNA/cytogenetic(More)
Cells isolated from Lepidopteran insects (butterfly and moths) display very high radioresistance as compared to mammals and other insect species. Since free radical induced mitochondrial damage under stress conditions is very crucial for cellular fate determination, antioxidant system is the major protective modality required to minimize stress-induced(More)
Vegetative insecticidal protein (Vip3A) is synthesized as an extracellular insecticidal toxin by certain strains of Bacillus thuringiensis. Vip3A is active against several lepidopteran pests of crops. Polyphagous pest, Spodoptera frugiperda, and its cell line Sf21 are sensitive for lyses to Vip3A. Screening of cDNA library prepared from Sf21 cells through(More)
PURPOSE To investigate the underlying mechanisms of cell-death at extremely high doses of radiation in radioresistant Spodoptera frugiperda-9 (Sf9) insect cells. MATERIALS AND METHODS Morphology, cell proliferation and DNA-fragmentation analysis was performed at 500-2000 Gy. Changes in intracellular reactive oxygen species (ROS), mitochondrial membrane(More)
PURPOSE To investigate age-correlated radiosensitivity in highly radioresistant lepidopteran pest, Helicoverpa armigera, upon exposure to ionizing radiation and to examine the irradiation impact on stress-molecular responses in F1 (first-filial) progeny of irradiated (100 Gy) male moths in relation to its reproductive behavior. MATERIALS AND METHODS(More)
PURPOSE To investigate the effect of gamma radiation-induced alterations in antioxidant defence of radioresistant Sf9 insect cells. MATERIALS AND METHODS Sf9 cells were irradiated at doses ranging from 0.5-200 Gy. Lipid peroxidation and protein carbonylation levels were observed at 4 h post-exposure along with reduced glutathione/oxidized glutathione(More)