Learn More
Mass changes of the Greenland Ice Sheet resolved by drainage system regions were derived from a local mass concentration analysis of NASA-Deutsches Zentrum für Luftund Raumfahrt Gravity Recovery and Climate Experiment (GRACE mission) observations. From 2003 to 2005, the ice sheet lost 101 +/- 16 gigaton/year, with a gain of 54 gigaton/year above 2000 meters(More)
The axial component of the oceanic tidal angular momentum (OTAM) has been demonstrated tobe responsible for most of the diurnal and semidiurnal variations in Earth's rotational rate. In this paper we study the equatorial components of OTAM and their corresponding effects on the orientation of Earth's rotational axis, or polar motion. Three ocean tide models(More)
In this preliminary study, the feasibility of fixing fractured bones was explored using the ethyl and isobutyl 2-cyano-acrylates, prepolymerized barnacle cement, and fibrin glue. Adequate cohesive strength cannot be obtained when lipids are present on the surface to be joined by alkyl 2-cyanoacrylates. Oxidized regenerated cellulose gauze soaked in a highly(More)
The accuracy of state-of-the-art global barotropic tide models is assessed using bottom pressure data, coastal tide gauges, satellite altimetry, various geodetic data on Antarctic ice shelves, and independent tracked satellite orbit perturbations. Tide models under review include empirical, purely hydrodynamic (“forward”), and assimilative dynamical, i.e.,(More)
Recent space-geodetic observations have revealed daily and subdaily variations in the Earth's rotation rate. Although spectral analysis suggests that the variations are primarily of tidal origin, comparisons to previous theoretical predictions based on various ocean models have been less than satisfactory. This disagreement is partly caused by deficiencies(More)