Rajkumar Ganesan

Learn More
Aza-peptide Michael acceptors are a novel class of inhibitors that are potent and specific for caspases-2, -3, -6, -7, -8, -9, and -10. The second-order rate constants are in the order of 10(6) M(-1) s(-1). The aza-peptide Michael acceptor inhibitor 18t (Cbz-Asp-Glu-Val-AAsp-trans-CH=CH-CON(CH(2)-1-Naphth)(2) is the most potent compound and it inhibits(More)
Caspases are cysteine proteases involved in the signalling cascades of programmed cell death in which caspase-3 plays a central role, since it propagates death signals from intrinsic and extrinsic stimuli to downstream targets. The atomic resolution (1.06 Angstroms) crystal structure of the caspase-3 DEVD-cmk complex reveals the structural basis for(More)
Caspase-3 is a prototypic executioner caspase that plays a central role in apoptosis. Aza-peptide epoxides are a novel class of irreversible inhibitors that are highly specific for clan CD cysteine proteases. The five crystal structures of caspase-3-aza-peptide epoxide inhibitor complexes reported here reveal the structural basis for the mechanism of(More)
A number of strategies and protocols for the expression, purification and kinetic characterization of human caspases are described in the literature. We have systematically revised these protocols and present comprehensive optimized expression and purification protocols for caspase-1 to -9 as well as improved assay conditions for their reproducible kinetic(More)
Using a fragment-based docking procedure, several small-molecule inhibitors of caspase-3 were identified and tested and the crystal structures of three inhibitor complexes were determined. The crystal structures revealed that one inhibitor (NSC 18508) occupies only the S1 subsite, while two other inhibitors (NSC 89167 and NSC 251810) bind only to the prime(More)
  • 1