Rajesh Ramakrishnan

Learn More
Sequencing flexibility refers to the possibility of interchanging the order in which required manufacturing operations are performed. In this paper, we address several issues related to the modeling, measurement and performance evaluation of this flexibility in manufacturing systems. In particular, we introduce several representation and measurement schemes(More)
Herpes simplex virus (HSV) represents a candidate gene transfer vector for the treatment of nervous system disease. It has many natural biological features which make it attractive for gene delivery to a variety of tissues. The virus naturally establishes a latency in sensory neurons of the peripheral nervous system, wherein the virus in maintained as an(More)
HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4(+) T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral(More)
Nasal NK/T cell lymphomas (NKTCL) are a subset of aggressive Epstein-Barr virus (EBV)-associated non-Hodgkin's lymphomas. The role of EBV in pathogenesis of NKTCL is not clear. Intriguingly, EBV encodes more than 40 microRNAs (miRNA) that are differentially expressed and largely conserved in lymphocryptoviruses. While miRNAs play a critical role in the(More)
HIV-1 Tat activates RNA Polymerase II (RNAP II) elongation of the integrated provirus by recruiting a protein kinase known as P-TEFb to TAR RNA at the 5′ end of nascent viral transcripts. The catalytic core of P-TEFb contains CDK9 and Cyclin T1 (CCNT1). A human endogenous complexome has recently been described – the set of multi-protein complexes in HeLa(More)
BACKGROUND The elongation phase, like other steps of transcription by RNA Polymerase II, is subject to regulation. The positive transcription elongation factor b (P-TEFb) complex allows for the transition of mRNA synthesis to the productive elongation phase. P-TEFb contains Cdk9 (Cyclin-dependent kinase 9) as its catalytic subunit and is regulated by its(More)
Processive elongation of the integrated HIV-1 provirus is dependent on recruitment of P-TEFb by the viral Tat protein to the viral TAR RNA element. P-TEFb kinase activity requires phosphorylation of Thr186 in the T-loop of the CDK9 subunit. In resting CD4+T cells, low levels of T-loop phosphorylated CDK9 are found, which increase significantly upon(More)
Productive transcription of the integrated HIV-1 provirus is restricted by cellular factors that inhibit RNA polymerase II elongation. The viral Tat protein overcomes this by recruiting a general elongation factor, P-TEFb, to the TAR RNA element that forms at the 5' end of nascent viral transcripts. P-TEFb exists in multiple complexes in cells, and its core(More)
BACKGROUND HIV-1 envelope gp41 is a transmembrane protein that promotes fusion of the virus with the plasma membrane of the host cells required for virus entry. In addition, gp41 is an important target for the immune response and development of antiviral and vaccine strategies, especially when targeting the highly variable envelope gp120 has not met with(More)
Herpes simplex virus (HSV) is an attractive candidate vector for treatment of nervous system disease by gene therapy. Here we review molecular aspects of the natural biology of HSV as it relates to vector design and application. Although gene transfer and transient expression was readily achieved using first generation replication defective HSV vectors,(More)