Learn More
The responses of visual cortical neurons during fixation tasks can be significantly modulated by stimuli from beyond the classical receptive field. Modulatory effects in neural responses have also been recently reported in a task where a monkey freely views a natural scene. In this article, we describe a hierarchical network model of visual recognition that(More)
We propose an algorithm that uses Gaussian process regression to learn common hidden structure shared between corresponding sets of het-erogenous observations. The observation spaces are linked via a single, reduced-dimensionality latent variable space. We present results from two datasets demonstrating the algorithms's ability to synthesize novel data from(More)
A spike-timing-dependent Hebbian mechanism governs the plasticity of recurrent excitatory synapses in the neocortex: synapses that are activated a few milliseconds before a postsynaptic spike are potentiated, while those that are activated a few milliseconds after are depressed. We show that such a mechanism can implement a form of temporal difference(More)
— We tackle the problem of learning imitative whole-body motions in a humanoid robot using probabilistic inference in Bayesian networks. Our inference-based approach affords a straightforward method to exploit rich yet uncertain prior information obtained from human motion capture data. Dynamic imitation implies that the robot must interact with its(More)
Active vision systems have the capability of continuously interacting with the environment. The rapidly changing environment of such systems means that it is attractive to replace static representations with visual routines that compute information on demand. Such routines place a premium on image data structures that are easily computed and used. The(More)
A reliable and unobtrusive measurement of working memory load could be used to evaluate the efficacy of interfaces and to provide real-time user-state information to adaptive systems. In this paper, we describe an experiment we con-ducted to explore some of the issues around using an elec-troencephalograph (EEG) for classifying working memory load. Within(More)
This paper presents a two-part study investigating the use of forearm surface electromyographic (EMG) signals for real-time control of a robotic arm. In the first part of the study, we explore and extend current classification-based paradigms for myoelectric control to obtain high accuracy (92-98%) on an eight-class offline classification problem, with up(More)