Learn More
We propose an algorithm that uses Gaussian process regression to learn common hidden structure shared between corresponding sets of het-erogenous observations. The observation spaces are linked via a single, reduced-dimensionality latent variable space. We present results from two datasets demonstrating the algorithms's ability to synthesize novel data from(More)
Learning through imitation is a powerful and versatile method for acquiring new behaviors. In humans, a wide range of behaviors, from styles of social interaction to tool use, are passed from one generation to another through imitative learning. Although imitation evolved through Darwinian means, it achieves Lamarckian ends: it is a mechanism for the(More)
A large number of human psychophysical results have been successfully explained in recent years using Bayesian models. However, the neural implementation of such models remains largely unclear. In this article, we show that a network architecture commonly used to model the cerebral cortex can implement Bayesian inference for an arbitrary hidden Markov(More)
We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naive decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task(More)
The responses of visual cortical neurons during fixation tasks can be significantly modulated by stimuli from beyond the classical receptive field. Modulatory effects in neural responses have also been recently reported in a task where a monkey freely views a natural scene. In this article, we describe a hierarchical network model of visual recognition that(More)
Active vision systems have the capability of continuously interacting with the environment. The rapidly changing environment of such systems means that it is attractive to replace static representations with visual routines that compute information on demand. Such routines place a premium on image data structures that are easily computed and used. The(More)
A reliable and unobtrusive measurement of working memory load could be used to evaluate the efficacy of interfaces and to provide real-time user-state information to adaptive systems. In this paper, we describe an experiment we con-ducted to explore some of the issues around using an elec-troencephalograph (EEG) for classifying working memory load. Within(More)
Brain rhythms are more than just passive phenomena in visual cortex. For the first time, we show that the physiology underlying brain rhythms actively suppresses and releases cortical areas on a second-to-second basis during visual processing. Furthermore, their influence is specific at the scale of individual gyri. We quantified the interaction between(More)